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ABSTRACT

Function-theoretic techniques which have been successful in

I solving electromagnetic scattering problems involving wedges satisfying

an impedance boundary condition are used to formulate the scattering by

a wedge composed of two resistive sheets. The goal is to investigate

J the possibility of generalizing the techniques to the two region problem,

characterized by nonzero fields in both the interior and exterior of the

I wedge.

I The particular techniques considered are the method of ?aliuzhinets'
(1950 et seq.) and the Kontorovich-Lebedev transform (1939). Both

I techniques involve integral representations (transformations) for the

unknown fields, and generation of functional equations for the transformed

I unknowns. It is shown that for the resistive wedge, the presence of an

interior field results in functional equations of considerably greater

complexity than those encountered in similar single region problems, and

which cannot be solved using standard techniques.

A novel procedure is developed which replaces the functional

I equations with integral equations of the Fredholm type, which are well

understood in the literature. Though exact solutions are not found,

I an approximate solution is obtained via the method of successive

approximations from linear operator theory. The approximation consists

of a power series in terms of the resistivity, and bounds for its

region of convergence are given.
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CHAPTER I. INTRODUCTION

1.1 Previous Analyses of the Scattering from Wedges: A Review

The scattering of electromagnetic waves by wedge-shaped regions

I has been investigated by several authors, although few exact solutions

exist [1-28]. For the case of a perfectly conducting wedge, the first

I solution is attributed to Sommerfeld (see Carslaw, [1]), and to Mac-

Donald [2]. These works addressed the two-dimensional scalar problem,

and were based on an extension of the method of images described by

I Carlslaw [3]. A special case, in which the included angle of the

wedge is zero, was elegantly solved by Sommerfeld [4]. This solution

Ifor the half-plane has served as a model for investigating the effects

l of edge diffraction. Clemnow [5] developed a technique for general-

izing these results to the case of obliquely incident plane wave

excitation. Modal expansions for the solution can be found in [6],

for example, while an expression for the general vector problem in

l the form of a dyadic Green's function is given by Tal [7].

In the event that the wedge is not perfectly conducting, an

exact solution cannot be found. However, for the case in which the

m conductivity is large but finite, Leontovich [8] has developed an

approximate boundary condition, known as an impedance boundary

condition, which allows several otherwise intractable problems to be

solved.

I -l -

I
-1 -.
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The major attribute of this approximation is that it replaces

the fields within the conducting body with approximate surface currents

via the boundary condition. With the interior field thus accounted

for, the number of unknowns is halved, and only the exterior field

need be determined. In particular, Senior [9] found a solution for

the impedance half-plane under normal plane wave incidence, and later

extended it to include oblique incidence [10]. This extension was

related to Clemmow's technique by Williams [11]. The results are

obtained through application of the Wiener-Hopf method (see [12]) to

the unknown currents excited on the half-plane. For a wedge of

arbitrary angle and differing face impedances, a general solution to

the scalar problem with plane wave incidence was developed by

Maliuzhlnets in his doctoral thesis and subsequent works [13-15].

His method is a further generalization of the method of images,

and involves an integral representation for the field along a

Sommerfeld contour. Maliuzhinets replaces the integral equation for

the unknown by an equivalent functional difference equation. Senior

[16] and Williams [17], following similar methods, also arrived at

the solution for the case in which the face impedances are the same.

Variations on the half-plane problem and its solution are given

by Rawlins [18], Hurd [19],and Bucci and Franceschetti [20], which

are essentially founded on either the Wlener-Hopf or Maliuzhlnets'

method.

Another function-theoretic technique for solving scattering

problems in wedge-shaped regions was presented by Kontorovich and

Lebedev [21] in the form of an integral transform bearing their
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I names. A solution for the perfectly conducting half-plane was

given as an example. In a recent paper [22], Jones derives

sufficient conditions for the existence of the transform and a

generalized inverse. In a major extension of their work, Lebedev

and Skal'skaya [23] applied the transform to the impedance wedge and

I developed a closed form solution for a special set of wedge angles.

Their method resulted in a functional difference equation, paralleling

Maliuzhinets' technique, but the equation is of second order instead

of first. In fact, Maliuzhinets [24] described the relationship

l between his method and the Kontorovich-Lebedev (K-L) transform via

a Fourier transformation.

In addition to the impedance boundary condition, of which

infinite conductivity and its dual are special cases, another

approximation exists which accounts for the material properties of a

1 scattering body via an equivalent boundary condition. In this case,

the body is assumed to consist of a thin dielectric shell of a

particular shape, and is approximated by an infinitely thin, partially

transparent layer. Because it is most applicable to lossy dielectrics,

this approximation is referred to as a resistive boundary condition,

I although due to the transparency of the sheet, and hence the existence

of both interior and exterior fields, it is more exactly a transition

condition, analogous to those applied at an interface between two

I dielectrics. Derivations of this condition can be found in [25,26].

Very few exact solutions for resistive bodies exist. Senior [27] and

I Anderson [28] give solutions for a resistive half-plane using a Wiener-

Hopf analysis. An excellent review of the impedance and resistive

I

IA
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boundary conditions for the half-plane is presented by Senior in

f 29]. and a condensed version comparing the two is contained in

Section 1.3 of this work.

Finally, it should be noted that the electromagnetic problems

discussed above have analogs in other disciplines involving wave

phenomena, especially in acoustics. The acoustic equivalents of

the impedance and resistive boundary conditions in the context of

Babinet's principle are pursued by Senior in [30].

1.2 Outline of the Scattering Problem

In order to further understand the nature of the scattering

from partially penetrable objects, in particular those composed of

resistive materials, an investigation into the scattering of an

arbitrarily polarized electromagnetic plane wave normally incident

on a wedge with resistive faces is presented here. The resistivity

of the wedge is assumed to be a complex scalar constant, independent

of position on the wedge. The unknown fields exist in two regions,

the exterior of the wedge (Region 1), from which the plane wave is

incident, and the interior of the wedge (Region 2), as shown in

Fig. 1.1. The primary distinction between this problem and those

discussed previously is the existence of a nonzero field in the

interior region. This field severely complicates the task of finding

a solution. In some respects, the problem closely resembles the

scattering by a dielectric wedge, where an interior field is also

present. Indeed, exact solutions for dielectric bodies are very few,

and those which have been developed for special cases of the
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wedge [31-32], are either extremely complicated or somewhat in

doubt [33].

Following a brief derivation and comparison of the impedance

and resistive boundary conditions in Section 1.3, a formulation of

the scattering problem to be considered is presented in Chapter II.

By appropriately decomposing the incident field into two components,

with either the E- or H-field vector parallel to the edge of the

wedge, the solution can be constructed from a pair of scalar two-

dimensional fields. The problem is further simplified by decomposing

the scalar fields into components which are either symmetric or

antisymmetric about a plane bisecting the wedge. Thus a total of four

quantities are required to specify the general solution.

The approach taken in this work is to examine the feasibility

of extending the function-theoretic techniques used in solving the

impedance wedge scattering problem to the resistive wedge. While the

Wiener-Hopf method has successfully been applied to the half-plane and

other geometries (see for example, Carlson and Heins [34,35]) it is not

appropriate for wedges of arbitrary angles, with the possible exception

of the right-angle wedge. Senior discusses this shortcoming, as well

as certain analogies between Maliuzhinets' method and the Wiener-Hopf

technique in [16,29]. Therefore, the emphasis here will be on the

methods of Maliuzhinets and the Kontorovich-Lebedev transform. It is

shown that both methods lead to difference equations, as was the case

for the impedance wedge. However, when applying the method of

Malluzhinets, the resulting difference equation for the resistive wedge
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is of third order, compared to the first order equation obtained

for an impedance wedge. In general, a straightforward technique

I for solving this third order equation is not available [36]. A

derivation of this equation and its consequences is given in

m Chapter III.

In Chapter IV, the relationship between the representation

of Maliuzhinets and Kontorovich and Lebedev is presented [24].

I The latter is applied to the resistive wedge formulation, and again

a set of difference equations for the unknowns is generated.

I As before, the equations do not yield to the same methods of

solution available for the impedance wedge. However, a novel

technique for converting the difference equations to Fredholm

integral equations of the second kind is developed. The kernels

of the integrals are bounded and well behaved. This type of

I integral equation is well understood in the literature [37,38],

i and various means of filnding exact or approximate solutions are

available.

Such a method Is developed in Chapter V for the Fredholm

integral equations obtained from the K-L representation. From the

I theory of linear operators, the method of successive approximations

is applied to obtain an iterative power series expansion for the

unknowns. The expansion is in terms of the resistivity of the wedge,

I and converges uniformly for particular ranges of values of this

parameter. Bounds for the regions of a convergence are given. TheI

I



chapter is concluded with a discussion of how similar expansions

obtained from the difference equations may not exist in certain cases.L

A summary and discussion of the results follow in Chapter VI.

Appendix A contains a set of conditions for the existence of the

representations used by Maliuzhinets and Kontorovich and Lebedev, along

with their corresponding inverses.

1.3 Discussion of the Impedance and Resistive Boundary Conditions

Before proceeding with an analysis of the scattering by a

resistive wedge, it is appropriate to review the mathematical

implications of the impedance and resistive boundary conditions,

In vector form, the impedance boundary condition on the surface

S of a body is given by

E- (;i -f n Z; x R on S ,(1)

where (RJi) are the total fields in the region surrounding the

body, assumed to be free space, Z is the intrinsic impedance of free

space, and n is a unit vector normal to S and directed into the region

containing the fields (see Fig. 1.2). The dimensionless parameter n~

is the surface impedance of the boundary normalized to free space.

Physically speaking, if the body consists of a material with large

refractive index, and hence large relative complex permittivity,

ni has the form [39)

n L= { + .1 ~ (1.2)
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where e,pa,a are the permittivity, permeability, and conductivity

of the body, respectively, and e, % are the corresponding free

space parameters. An e-I~t time dependence has been assumed and

suppressed here and throughout this work with w the angular frequency

of the EMi field. Note that as a- ~ n -~ 0 and (1.1) becomes the

boundary condition for perfect conductivity, i.e.,

nx~ 0

as expected. It was in this context that (1.1) was introduced [8]

as an approximation to the boundary conditions at a body with

large but finite conductivity. A discussion of the validity of the

approximation can be found in [40). The utility of (1.1) is that

it reduces the problem of determining the fields both inside and

outside the body to that of solving the exterior problem alone,

subject to a boundary condition which describes the material properties

of the body. All interior fields are identically zero. As discussed

in Section 1 .1 , several scattering problems satisfying such a

condition have been solved.

Regardless of its physical implications, mathematically

(1.1) relates the tangential components of E and A via a parameter ni.

In terms of the equivalent electric and magnetic surface currents

R e ~x R (1.3a)

'M -n x~ (1.3b)
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1 respectively, it follows that

IK.= -nZ x K .(1.4)ie

An interesting duality transformation exists for the impedance

boundary value problem. It can be stated via the following theorem

[39]:

Theorem 1: If the electromagnetic field incident upon a body

I satisfying the boundary condition (1.1) is denoted by

I (V i,) = (-F,yG)

I
and the scattered field byI

(Es,Hs) = (T(n),Y (n)) ,

I 
where

S(E,H) ( + Es , ji + A),

then for an incident field

I(Eli) (-zaF)
the scattered field is

'I SE5 'AS) =(Z(/) (f)

This is equivalent to the transformation E + H, ZH -YE, n 1/n,

and can easily be derived by taking the cross product of (1.1) with

, yielding

I
I
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H-( H)fi = x - 15

Equation (1.5) is simply a restatement of (1.1) under the prescribed

transformation. By allowing ni+~ (or 1fr/ 0), (1.5) reduces to

n xH = 0

which is the boundary condition for a perfect (nonetheless fictitious)

magnetic conductor.

Suppose instead that the material body in Fig. 1.2 is replaced

by a thin shell of thickness 6, coincident with surface S. The shell

is composed of the same material as the body, with parameters C..C

A solution for the scattering from such a structure requires the

determination of the fields in the three regions defined in Fig. 1.3.

If, however, one again considers the situation when the complex

permittivity becomes large while simultaneously allowing the

thickness to decrease, such that their product remains constant, then

the three region problem can be approximated by a two region problem

with an appropriate set of boundary conditions on the surface S.

A mathematical description of the limiting process is given in [25,26].

Referring to the geometry in Fig. 1.4, the approximate vector

boundary conditions that now apply are
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I

I
I

I

, Region 1I:

i~ ( 0 o Region 2
( ,o 2 )

o Region 3

(- >l ,%C

S

1

Fig. 1.3 Diagram for the Derivation of the Resistive Boundary
I Condition.
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R

Region 1
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I - -
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4

Fig. 1.4 Equivalent Geometry for Fig. 1.3 with the Scattering

Body Replaced by a Resistive Surface.
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n x 0 (1 .6a)

x~ (x E -Rn x 153' (1.6b)

where the notation ]+) denotes the discontinuity in the value of a

quantity across the surface S, or more exactly,

If]+ = fl -f2  ; on S

with f an arbitrary function. The subscripts refer to the

corresponding values in Regions I and 2 of Fig. 1.4. In terms of

equivalent surface currents

Ke =n x [H~(1.7a)

Km -n x [El (1.7b)

(1.6) becomes

Km = (1 .8a)

n x(n x) -RK (1.8b)

The parameter R, the resistivity of the layer, is given by

R (1.9
0
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in the limit as described above. The resistivity R has units of

ohms per square in the M4KS system. When a >> e, R tends toward a

purely real number, given by [26]J

R = .(1.10)

In general, for a passive material with a > 0, C > C 09 R is a

complex number lying in the first quadrant of the complex plane. From

(1.7), a resistive surface is equivalent to an electric current layer

whose strength is proportional to the tangential electric field

at its surface. Since the tangential electric field is continuous

across the layer (from (1.6a)), there are no magnetic currents.

It is interesting to note that in the limit as R -* 0, (1.6) becomes

a perfectly conducting boundary condition, while for R - ,(1 .6) can

be written as

n xfJ 0

n x + =0

These continuity conditions are satisfied by the incident field

alone, and hence there is no scattered field. Equivalently, the

scattering body has ceased to exist.

As was done for the impedance boundary condition (1.1), it is

convenient to normalize the resistivity via a dimensionless parameter

2R (.1
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I The factor of two is introduced because of an interesting result

from half-plane diffraction [27]. The total electric current on a

I half plane with surface impedance r, is identical to that on a resistive

half-plane with R satisfying (1.11). However, this result cannot be

generalized for arbitrary geometries.

I Recalling the duality transformation presented in Theorem 1,

its application to (1.6) yields

nx [) =0 (1.12a)

n nx (n xH) =R*n x [El:- (1 .12b)

where

R* (1.13)

While (1.5) is simply a restatement of the impedance boundary condition

under the prescribed duality transform, i.e., an impedance boundary

I condition is its own dual, examination of (1.12) indicates a similar

analogy does not exist for the resistive boundary condition. Indeed,

1 (1.12) describes a surface characterized by a jump discontinuity in

the tangential electric field, but no discontinuity in the tangential

I magnetic field. Such a surface supports only a magnetic surface

current m and has been referred to as a "conductive" sheet, with

conductivity R* mhos per square [27). A discussion of the duality

relations for impedance and resistive boundary conditions is

presented by Senior [41) in relation to Babinet's principle.
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It is appropriate to further compare the impedance and

resistive boundary conditions in the context ,f the problem considered

here. A wedge with upper and lower faces S+ and S respectively is

illuminated by a plane electromagnetic wave incident normal to the

edge of the wedge. By considering the cases in which the incident

electric or magnetic field is parallel to the edge (E- or H-polarization

respectively), as illustrated in Figs. 1.5a and l.5b, the vector

scattering problem can be reduced to two scalar, two-dimensional

scattering problems.

In the event that S+ and S. satisfy impedance boundary conditions,

(1.5) for E-polarization becomes

an+ LU = 0 ; on S+,S (l.14a)an n

where E = uU, u being a unit vector parallel to the edge of the

wedge. The normal derivative a/an is defined as

an

i.e., it is taken in the direction of the unit vector n, which from

Fig. 1.4 is directed toward Region I containing the incident field.

The propagation constant k is defined as

k c s , o
where c is the velocity of light in vacuo.
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n

I

(a)I

n

I
I

I^

i (b)

I
I

Fig. 1.5 Two-Dimensional Excitation of a Wedge by an (a) E-Polarized
and (b) H-Polarized Plane Wave.1

1
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Similarly, for H-polarization, (1.5) becomes

S+ iknV = 0 ; on S+,S (l.14b)n

where H = uV. Since it will be shown in Chapter II that both U and V

satisfy the scalar Helmholtz equation, as well as similar edge and

radiation conditions, the determination of a single quantity, U or V,

is sufficient, since the duality transformation of Theorem 1 serves to

specify the remaining unknown.

When the wedge satisfies resistive boundary conditions,

(1.6) applies, which can be written as

[ + +-k U =0 (1.15a)

[U] = 0 ; on S+,S_ (l.15b)

for an E-polarized incident field. For H-polarization the equivalent

equations are

LV +ifl_ i. o (l.16a)

an 2 (11a

an- = 0 ; on S+,S . (l.16b),
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Obviously, (1.15) and (1.16) are not duals of each other, and

therefore the scattering problem for an arbitrary polarized incident

plane wave requires the solution of two different scalar problems.

Further complications arise from the existence of fields in both

I Regions I and 2, as implied by the bracketed quantities in (1.15)

I and (1.16).
For a more detailed comparison of the impedance and resistive,

Ias well as "conductive" boundary conditions, the reader is referred

to the works of Senior [27,29,30,41,42].



CHAPTER II. FORMULATION OF THE SCATTERING BY A RESISTIVE WEDGE

2.1 Statement of the Problem

Having provided a qualitative analysis of the resistive

boundary condition, including its physical and mathematical implications,

and having compared it to more conventional boundary conditions, a

rigorous formulation of the electromagnetic scattering of a plane wave

normally incident on a resistive wedge is presented.

The geometry under consideration is shown in Fig. 2.1. A wedge

of included angle 2 p composed of two resistive sheets S+ and S- has its

vertex coincident with the z-axis of a cylindrical coordinate system

(p, ,z). The resistivity R of the sheets is a scalar constant. The

azimuthal coordinate j is chosen to take on the values - ,< 2w 'p

The upper face of the wedge lies in the plane =i;the lower face in

the plane 'p 2w - .The exterior region (Region 1) is defined by

0<p < G

(p,'p,z) C Region 1I ~ p<' 2v

< Z <

Similarly, the interior region (Region 2) is defined by

0 5. P <

(P',z) e Region 2 ~ -,

-< Z <

-22-
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I
I
I

! ~ ~S+I t =

t / /

(aiH1) H

x

Region 1 Region 2( p < _ < _ 2 - 1p) - _ _ )

S-\
€=27-€

Fig. 2.1 Resistive Wedge of Included Angle 2q Illuminated by
a Plane Wave at Normal Incidence.

I
I

I
1

I
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Region 1 and 2 are assumed to be free space, with e =

= o" An E(H)- polarized electromagnetic plane wave with

z -ikp cos(,-,o) 
(2.1)

H i  Vi

is normally incident upon the wedge from an angle *o0, which lies in

Region I (see Fig. 2.1). Because of the symmetry of the geometry

about the plane y = 0, it is sufficient to consider, without loss of

generality, the following relation between the angle of incidence

and the half angle of the wedge:

Since the entire problem is independent of the z coordinate, the

two-dimensional problem in the plane z = 0 will be considered from

this point on. As stated previously, a harmonic time variation of

the form e~i( t is assumed and suppressed throughout.

Because the problem is two-dimensional, the total electro-

magnetic field (E,H) can be determined from the two scalar quantities

Ez and Hz. By assuming in turn the E- and H-polarized incident

fields (2.1), (for which Hz and Ez are zero, respectively), the

solution to the general problem is reduced to solving two scalar

problems for a single unknown.

As implied in (2.1), the unknowns EzHz will be denoted

by
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Ez  = U = Ui + Us  (2.2a)

I
IH z  = V = Vi + Vs  (2.2b)

where the superscripts i and s denote the incident and scattered

fields, respectively. The fields U and V are functions of the

I variables (p,), and as a result it is convenient to distinguish

their values in Regions 1 and 2 via appropriate subscripts, viz,I
U = U, = U1 + U1  , for (p,¢)E Region 1 (2.3a)I

= U2  = U2 + Us  , for (p,¢)E Region 2 , (2.3b)I
and similarly for V. As is traditionally the case, the incident field

I is assumed to permeate the entire space.

From Maxwell's curl equations in free space

I vx E iPoH

V x = -iW 0I
the following results can be shown in two dimensions (a/az = 0):

I E-polarization: E E = Hz = 0 Ez  = U

ikZH = I D! (2.4a)
p P

i a kZH¢ -u (2.4b)

I
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H-polarization: H = H = Ez  = 0 , Hz = V

ikYE 1 l V (2.5a)

ikYE = - (2.5b)

In addition, it can be shown that both U and V satisfy the scalar

Helmholtz equation

(v2 + k2)  = 0 (2.4)
V

in Regions 1 and 2, where V2 is the two-dimensional scalar Laplacian.

Expressing the resistive boundary conditions (1.15) and (1.16) in

polar coordinates (p,O), the following conditions on the surfaces S+

and S hold for E-polarization:

1- +iI! uj = 0

uI -'u21 = o (

U 2 0 - =21.,

Ui- U2 ,.=27, =0

U, 1 =27r* -U210 _
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Similarly, for H-polarization the conditions are

+ 2 1 1 - v21 =

S_ [T , - --'V ] = 0

(2.7)

P 32 =27r * 2 v =2 ._, * J

.1 v  
aV2

I Because the medium and the scattering body are both infinite

Iin extent, the functions U and V are required to satisfy an

additional constraint as p + in the form of a Sommerfeld radiation

Icondition. Specifically, by decomposing U and V into a geometrical
optics component, obtained from ordinary ray theory, and a diffracted

Icomponent, viz
U = Ug + Ud  (2.8a)

V = Vg + Vd (2.8b)I
each of which is a discontinuous function of *, then the diffracted

I components satisfy*

The reasoning behind this decomposition is discussed by Williams [11].
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lim p/2 - ik U 2  = 0 (2.9a)

1/20, aK 1 d
lim pl2 2-- ik V = 0 (2.9b)

uniformly for all € appropriate to Regions 1 and 2. Condition (2.9)

is discussed in [6] and elsewhere; its vector analog, the Silver-

Muller condition, can be found in several texts on electromagnetic

theory, see Jones [43], for example. Roughly speaking (2.9) is

equivalent to requiring that the diffracted field have the form

of an outgoing cylindrical wave at infinity, decaying as the

reciprocal of the square root of the distance from the line z = 0.

Finally, the geometrical singularity presented by the vertex

of the wedge requires the specification of an additional condition

governing the behavior of the fields in the vicinity of the edge.

This physical constraint, known as the edge condition, is usually

expressed by requiring that the stored electric and magnetic energy

in any neighborhood of the edge be finite; that is

lim f (_ 01j1
2 + polH12 )dv = 0 . (2.10)

V V

Jones [43] derives a uniqueness theorem for finite dielectric bodies

and infinite perfectly conducting bodies based on (2.9) and (2.10). He

indicates, however, that these equations do not appear to be

sufficient to insure uniqueness for infinite dielectric structures

(such as a dielectric wedge) [44]. While the uniqueness of the
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resistive wedge problem has not been addressed in the literature,

it will he assumed that a solution satisfying (2.1) through (2.10)

provides the desired results. This assumption is legitimately

questioned, since, as was pointed out in Chapter I, there exist

similarities between the resistive and dielectric wedge scattering

problems.

There are several physically intuitive means of expressing

the edge condition [45,46] which are equivalent to (2.10) for a

perfect conductor. These include zero induced charge or finite

surface current and charge conditions. An overview of these works

and a general discussion of the edge condition for perfect

conductors can be found in Jones [43].

It is relatively easy to show for a straight edge that (2.10)

is equivalent to requiring that no component of the fields be more

singular than p- in the neighborhood of the edge, where 6 < 1.

More exactly,

max ff i) = (P- ) ; 0+ (.1

where ff1} are the components of the electric and magnetic fields, and

0( )is the standard order relation, whereby

f = 0(g) ; ' p 0

=4 3 A - constant: limo (fg-1) <A.

'IP
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Meixner and others [47,48] have investigated the possible values

of the parameter a for various wedge-like regions, including both

perfectly conducting and dielectric wedges. By assuming series

expansions in powers of p for the various field components, Metxner

derives expressions for the series coefficients and admissible values

of 6 via Maxwell's equations and the boundary conditions. In

particular, he shows that the lowest order (most singular) terms are

equivalent to those obtained for the corresponding static field

problem. An important consequence of this result is that the field

components parallel to the edge (in this case, Ez and Hz) are finite

for all geometries. Although some doubt has recently been expressed

regarding the validity of Meixner's series expansion in the dynamic

(o 0) case [49], it appears that the lowest order terms are still

the correct asymptotic forms.

Thus, for the resistive wedge, it is assumed that

U,V = O(p6 ) ; 6 > 0 , p ) 0 , (2.12)

uniformly for all * in each of Regions 1 and 2. Note that in the

event that 6 = 0, i.e., U,V = constant at p = 0, equation (2.6)

guarantees that the value of the constant is the same in Regions 1

and 2 for E-polarization. However, the same is not true for

H-polarization (see (2.7)); there may be a discontinuity in the

value of V at p = 0 in passing from Region 1 to Region 2. This

observation is related to the fact that a resistive layer can
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support only an electric current, which is radially directed for

H-polarization. In the event that this current is zero at the

edge, then the discontinuity disappears and the value of V at p - 0

is the same in both regions.

In summary, the problem addressed in this work may be stated

as follows. For the geometry of Fig. 2.1, illuminated by alternately

E- and H-polarized plane waves of the form (2.1), two scalar

unknowns U and V are sought which satisfy the Helmholtz equation

(2.4), the boundary conditions (2.6) and (2.7), respectively, and

the radiation and edge conditions (2.9) and (2.10), or equivalently,

(2.12). The problem will be analyzed by applying the function-

theoretic techniques of Maliuzhinets and Kontorovich and Lebedev.

It is worthwhile to note that the more conventional method of mode

matching, otherwise known as the method of separation of variables,

is not applicable to resistive (or impedance) wedge scattering

problems unless a resistivity (or impedance) which varies in a specified

manner as a function of p is assumed (see [50], for example). Since

a constant resistivity is assumed in this work, the mode matching

method is not a valid approach to the problem.

Before proceeding with the analysis, a decomposition for the

unknowns will be outlined which will prove instrumental in simplifying

several of the resulting expressions, especially the boundary conditions

(2.6) and (2.7).

1
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2.2 The Method of Symmetric and Antisymnetric Components

It is a well known result that an arbitrary function f(x)

defined on an interval (a,b) can be decomposed into two functions

which are respectively even (symnetric) and odd (antisymmetric) about

the midpoint c of (a,b). Denoting these functions by fe and fo and

letting

f(x) = fe(x) + fo(x)] , (2.13)

then

fe(x) = f(x) + f(2c - x)
(2.14)

fo(x) - f(x) - f(2c - x)

and

fe(x) . fe( 2c - x)

fo(x) - -f(2c - x) (2.15)

Furthermore, if f is continuous and differentiable at x = c, then

from (2.14) and (2.15) it can be shown that

dfel =~ 2.16a)
dx x=c

fOl = 0 . (2.16b)
!X=C



I
i -33-

An important consequence of this result is that a knowledge of the

single function f(x) on (a,b) is equivalent to a knowledge of two

I functions, fe(x) and fo(x), on the half interval (a,c].

The exterior and interior regions of the resistive wedge

I (Fig. 2.1) can be considered as intervals [*,2r-i] and [-p, ] in the

angular variable 0. Likewise, the unknowns U1 ,V1 and U2 ,V2 in

these regions represent functions of on the appropriate intervals.

Hence, the decomposition (2.13) can be applied to the unknowns in

Regions 1 and 2 by writing

U (p) = } [Ue (p,) + U° (p,)] (2.17a)1 92 2 1 92 1 92

V (p,[) = . [Ve (p,€) + V°  (p,¢)j (2.17b)
1 92 1 2 1 92

where, neglecting the p-dependence,

e = U (.) - U (2w - 0) (2.18a)

I ue'( = U ) + U (-o) (2.18b)

and similarly for V and V . The plus sign corresponds to the1 symil e 2
symmetric (e) component, and the minus sign to the antisymmetric (a)

component. From (2.15) it is obvious that UeVe (U°,V° ) are even (odd)S1 1 1 1
e e

about g = i while U2, V (UO,V O ) are even (odd) about 0 = . Of
2 2 22

I greater significance is equation (2.16), from which it is determined

thatI
1
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L(Ue,ye) a (2.19a)

(UoVo)I  = o (2.19b)
I IIOM

and

a (Ue,Ve)( 0 (2.20a)
~0 2 2

(U v° )  = 0 (2.20b)
2 2 ]O =

It is beneficial to recall equation (2.3), in which U and V

were expressed as the sum of an incident and scattered field. The

same result holds for Ue, U°, Ve, and V° , i.e.,

Ue  Uei + Ues

1 92 1 2 1 2

= + (2.21)

0o  Uoi + Uos

L 1,2 J L 1,2 12 j2

and likewise for Ve V,0  It is hoped that the reader will forgive
1,2' 1,2-

the rather cumbersome use of superscripts and subscripts which

the author has employed. From (2.18) and (2.1) it is simple to show

that



-35-

ue = uei = vei = vei = eikpcos(O- o) + eikpcos(O o) (2.22a)
2 1 +2 e=

oi = oi oi vOi = eikpcos(-¢ ) - e ikpcos(*+o ) (2.22b)

U1  U2  V1  V2

Therefore the notation for the various incident field components

can be simplified by denoting the right-hand sides of equations

(2.22a,b) by Ie and I0, respectively. Equation (2.21) now has

the less confusing form

U Ie +Ues1 , 2  1 , 2

o io 0s

U 0I +Uo
1,2 = 1,2 (2.23)

V, 2  
e  s

V , 2  1 +

From the symmetry of the geometry it is easy to show that the

left-hand side of (2.23) satisfies the boundary conditions of the

original problem (2.6) and (2.7), as well as the wave equation and
e e

radiation and edge conditions. Thus (Ue,2 V,2) are the E- and H-

polarized solutions to the scattering problem with incident field Ie,0 0
while (U 2V are the E- and H-polarized solutions for the

incident field I0. Furthermore, by essentially replacing the boundary

conditions on the lower wedge surface S. by the conditions (2.19) and

(2.20), it is sufficient to determine the unknowns in the upper half

space y 1 0 to completely solve the problem, as illustrated In
Fig. 2.2.

IIi i Il I l I 1 - = . .

. . . . .., ' .. -i . , , ., . , . .
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S+ U iS+
ui 4 )/ uis+

1 /

< 0

(a)

S+ S+

/u i M M i (

/ I

U =0

-uI (2,-ir)

S-

(b)

Fig. 2.2: Symmetric (a) and Antisymetric (b) 
Excitation of a

Resistive Wedge and the Equivalent 
Half-Space Problems.

Analogous Results hold for V().
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The new boundary conditions for U 2 become

I[Ul -U2e L i = 0 (2.24a)

e oe (2.24b)

Cus
0 (2.24c)

I _2 o , (2.24d)

while for Ve the following hold:

i kn [e 0 ~ (2.25a)

1 1 .-2.. = 0(2.25b)

=0 (2.25c)

21=0 0 
(2.25d)

I

I
I _ __.. 

._ 
_..._ _ 

,. ... ..
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For U V 0 equations (2.24c,d) and (2.25c,d) are respectively

replaced by the primed equations

u1  = 0 (2.24c')

- 0 ,(2.24d-)
21 =0

and

= 0 (2.25c')

V° I2 = 0 (2.25d')

In the remaining equations the symmetric (e) components are simply

replaced by the antisymmetric (o) components.

The most important consequence of the modified conditions

(2.24 through 2.25) is the presence of only a single "mixed"

transition equation for each unknown, i.e., equations (2.24a) and

(2.25a). These conditions, which contain the only dependence on

the resistivity n, are most responsible for the complexity of the

problem. The method of symmetric and antisymmetric components has

essentially eliminated this equation for the lower sheet. The

implications of this result will become apparent in Chapters III

and IV, in which the scattering problem will be analyzed via

Maliuzhinets' method and the Kontorovich-Lebedev transform.

I { r . .. . . .- .. - _
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CHAPTER III. THE METHOD OF MALIUZHINETS

By far the most successful technique for solving boundary

value problems in wedge-like regions was put forth by G. 0.

Maliuzhinets in his doctoral thesis [13] and subsequent publications

[14,15]. His method, which fundamentally is a generalization of the

method of images described by Carslaw [3], was able to provide the

solution for the scattering from an impedance wedge with differing

impedances on each of the faces [15]. Various aspects of

Maliuzhinets' technique were inadvertently and independently described

by Senior [16] and Williams [17] in solving similar problems.

The basis for Maliuzhinets' method is the ability to represent

I the total scalar fields (U,V) as a Sommerfeld integral of the form

Su(p,f) s(a - flI eikpcosa a (3.1)

1
|V(P,0) fyt(a - 0)

I where y is a contour in the complex a-plane, consisting of two loops

IY and y2 , symmetric about the point a = w, as illustrated in Fig. 3.1.

A contour integral of this type was first employed by Sommerfeld in

I his classic solution for the scatterin of a plane wave by a perfectly

conducting half-plane [1], and as a result (3.1) is often referred

I to as a Sommerfeld integral. Maliuzhinets has shown that (3.1) has

I-39-

I
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ImI

Im at

SI .IY /
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71 Re c

I A 2w

Fig. 3.1: The Contour of Integration y in the Complex a-Plane for
Use with the Maliuzhinets Method.
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a unique inversion (s,t) within a particular set of functions,

provided (U,V) satisfy certain boundedness conditions at p = 0 and

I p -. An outline of Maliuzhinets' uniqueness theorem is given in

Appendix A.

A direct consequence of this uniqueness theorem is that a

nonzero solution of the homogeneous equation

I f(a)eikpcosa da = 0 (3.2)

Y

must be even about the point a = n, i.e.,

f(a) = f(27 - a) , (3.3)

provided f(a) = O(e(la)IImal) as Im atl within the loops y1 and

Y2 where a > 0. This result is also derived in Appendix A. The

order relation above holds for functions of (p,o) satisfying the

radiation and edge conditions (2.9) and (2.10), respectively.

Recalling the representation (3.1) for (U,V), it is easy to

show that indeed (U,V) satisfy the Helmholtz equatinnI [
U"

(v 2 + k2) = 0 (3.4)

I In order to apply (3.1) to the boundary conditions (2.6) and (2.7)

(note the (3.1) is a representation for the total fields (U,V)),

it is appropriate to first consider the normal derivativeI
I
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.1 = - el P c [S(C' - ]d)I @I i kp c o s c, a da

P 3, = 2- t(Ci - 0)

1 ikPcos 3 d . (3.4)2 L t(a -

The interchange of the order of differentiation and integration is

justified by the uniform convergence of the integral along y provided

(s,t) satisfy the order relation mentioned previously. Integration

by parts leads to

1 = 1 e i kpcosI
-P ="LTIT-

t( - *)

T sin a eikpcos1 dci (3.5)
y 

t( c )

where y. denotes the various endpoints of the contour y as

JIM ci - -. From the behavior of (s,t) and the exponential (for

p > 0) within the shaded portions of Fig. 3.1, it can be shown that

the first term of equation (3.5) is zero, and thus

1 = sin a eikpcosl do, (3.6)

p TI

L V f t(a
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I Substitution of (3.1) and (3.6) into the boundary conditions (2.6) and

(2.7) results in the following equations for (s,t): for E-polarizationI
f [sin a (a-i - S (a - 1) -- s - ekpcos da = 0

Y

1 f [sin ( - 2 + ) - s( ea 41))

I Y
+ s 2vi +4) e ikPcosc di- =0

f fs (a - 2yr +1 s (a + e1) ekpcosa d., =0

i Y

and for H-polarization: 

(3.7)

f 4 sin at - -1 ( t (t -I ) - t (C L )] e i kpcOsm do - 0

Iy sin at 1 (a p) t 21a- kcsad

t 4 [,no (s- 27 +i) + t(a - 21 +4)

Y

I - t (Ci + )]ekocos d, 0

sin at(c- a +41 - t(a  + e ikpcos 0

j Y(3.8)

1
-w
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In equations (3.7) and (3.8) the subscripts 1,2 on (s,t)

correspond to the values of the functions in Regions 1,2,

respectively.

Following Maliuzhinets' derivation for the impedance wedge [15],

and by virtue of equations (3.2), (3.3), and the results of Appendix

A, equations (3.7) and (3.8) are equivalent to the following set of

functional equations:

E-polarization:

n sin a[s (a - (a-s - i)] -2s (a - 4)
1 2 1

= -n sin a[s (2w -ci- J) - s (2w - - ) - 2s (2w -ai- €) (3.9a)
1 2 1

s s ( ( - ) s (21r - a- ) - s (2w ci -a )(3.9b)1 2 1 2

n sin ci[s (ci - 2w + 'p) - s (ci + u,)] + 2s (ci - 2w + ii)

= -n sin acs 1(-a + ) - s (2w - + j)) + 2s (-a + j) (3.9c)

s (a - 2w + )-s (+ ) s (-a + )- s (2w - a + 4)(3.9d)
1 2 2 2

H-polarization:

2 sin a t (a - ip) n[t (m - i) - t (01 -
1 1 2

-2 sinca t (2tr-a nE (2n a t(2w a (3.1oa)I I 2
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t(a-") " t (a-" ) = -t1(27 - a - 0) + t (2r - a ) (3.10b)

2 sin a t (a - 2w + 0) + net (a - 21 + p) - t (a + )]I1 1 2

= -2 sina t (-a + ,) + nit (-a +) - t2(27r - a + 4) (3.10c)1 2

t (a- 2v +,) - t (a +,) = -t (-a +) + t (2- - a + f) (3.10d)
1 2 1 2

Equations (3.9) and (3.10) can be put in simpler terms. Adding

I(3.9a) and (3.9b) and subtracting (3.9c) and (3.9d) results In two
functional equations of similar form:

(1 - n sin a)S (a) = (1 + n sin a)S (27r - a) (3.11a)11 1

I (1 - n sin a)S (a) = (1 + n sin a)S (2w - a) , (3.11b)2 2

Iwhere
S (a) = s(,-,) - s (2f - a - ) (3.12)11 1 2

S (a) = s (-a + ) -s 2(a + ) . (3.12)

Analogously, equations (3.10a) through (3.10d) can be reduced to

I (n - sin ca)T 1(a) - (n + sin a)T (2w - a) (3.13a)

II

(n - sin a)T (a) - (n + sin a)T (2w - a) (3.13b)
2 2

I- I ,, --i r .. ... ... --. . ..
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where

T (0) = t (a- ) + t (2wr-a-,)
1 1 2

T (a) = t (-a+ )+ t (a+ ) (3.14)
2 1 2

Hence, equations (3.11) and (3.13) represent a set of coupled first-

order functional equations for the unknowns s ,s and t ,t
1 2 1 2

respectively. An important observation is that S ,2,T,,T all

satisfy identical equations, and therefore can differ at most by a

multiplicative factor M(a) satisfying (see Chapter 2 of [36])

M() = M(2w - a) (3.15)

Having determined S and S , one can obtain an uncoupled1 2

set of first-order, inhomogeneous functional equations for s and1

s , viz
2

s (a-4)-s (a- 2w +37p) = S (a) S 2(2w-a- 2*) (3.16a)1 1 1

s (a-,) -s (a- 27 +3,) = s (- 2w +2,) - S (2 -a)

2 2 2 1

(3.16b)

A similar result holds for t and t , i.e.,
1 2

t (a - -t (a - 2w + 3) = T (a) -T (2w - a -2) (3.17a)
1 1 1 2

t (a - ,)-t (a - 2w + 3,) - -T (a -2w + 2*) + T (2w a)
2 2 2 1

(3.1 7b)

i -i
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j Once again there is a similarity among the functional equations

(3.16) and (3.17) describing s and t . Indeed, if x(m) is1 ,2 1,2

an arbitrary solution of the homogeneous equation

x(c -*) -X(- 2w + 3) = 0 (3.18)

then s 1, 2,ti,t 2 are all of the form

= x(a) + P(a) (3.19)
t 1,2

where P(c) is a solution of the appropriate inhomogeneous equation

(3.16) or (3.17). That is to say, s1 2 and t1,2 are determined

up to an additive function of period 27 - 44i.

In order to uniquely determine s ,2,t1, 2 additional constraints

are required. One such constraint is the order relation previously

imposed:

S ,2 
1 aJ m a )j 

.= O(e(1a)IIm I) IIm (3.20)
t 1,2

within and on the loops y and y2 Furthermore, as is shown in

Appendix A, for an incident field of the form

Ui = Vi = eIkpcos( " )  , (3.21)I
I

iI I- - I I "-
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the functions

S(a - 2r+ )- (3.22a)
t z {a - j)

must be regular in the strip * < Re a < 2w - V, while

(3.22b)
t2)

must be regular in the strip r - L Re a < r + p. Conditions (3.20) and

(3.22) serve to limit the choices of x(a) and P(a), as well as M(a)

(see (3.15)) in determining the unknowns s1 ,s2,tl,t2.

In the event that it may be advantageous to preclude the

derivation of the corresponding conditions on S1,S2,Ti,T 2, as well as

to avoid the large number of arbitrary unknowns X,P,M and so on, it

is possible to eliminate s and t from equations (3.9) and (3.10)2 2

directly at the expense of arriving at a pair of considerably more

complex functional equations for s and t . After some rather tedious1 1

manipulation, one can obtain the following:

sin(a - 2*) [l - n sin a] s (a- €)- s (2w- a- )

=-sin a [l + n sln(a -2)] s (a- 2V- ')- s (-a + 3*)J (3.23)



-49-

I I-sn alt (a-)- sin a t (27r - a-)1 1

n= + sin(a - 2*)]t (a - 27r - ) + sin(a- 2*)t (-a + 3*) . (3.24)
11I

Similar expressions can be derived for s2 and t2 , or they can be

obtained directly from s1 and t1 , respectively.

It is evident that (3.23) and (3.24) are linear third-order

I functional equations of the unknowns s and t . Theoretically,
1 1

l solutions to this type of equation exist, but there is no straight-

forward means of deriving them, except in certain special cases [36].

This is analogous to the task of finding solutions to general

differential equations of order greater than one.

l To further emphasize the complexity of equations (3.23) and

(3.24), consider the corresponding functional equation developed

by Maliuzhinets in solving the scattering by an impedance wedge,

I namely

I (1 - n sin a)s(a - p) = (1 + n sin a)s(a - 2w + €) . (3.25)

I Equation (3.25) is a linear first-order functional equation for s(a).

I Two important differences exist between (3.25) and either (3.23) or

(3.24):I
I
I
I
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1. The functional equations for the resistive wedge (3.23)

and (3.24) are of third order, while (3.25) for the impedance wedge

is of first order. This difference in itself is sufficient to

preclude the possibility of finding a solution.

2. Equation (3.25) is a special type of functional equation

known as a difference equation, where the functional dependence of

the argument of s is in the form of a finite increment. In (3.25),

the increment is 2w - 2. However, (3.23) and (3.24) are not

difference equations. This is evident from the fact that the

arguments of s and t contain dependences on both +a and -a,

which cannot be expressed via a simple increment. Thus the author

was unable to apply techniques appropriate to difference equations

toward finding a solution.

In order to possibly obviate the difficulties discussed above,

the method of symmetric and antisymmetric components outlined in

Section 2.2 is considered. By writing

eU  y se(,'¢

U1e ikP c  s a da (3.25)

V t e((, €

and similarly for U° , V° , and then applying the boundary conditions

(2.24) and (2.25), four sets of functional equations are developed:
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I

m E-polarization (snmetric):

n sin fse(-) e-, sec l)] - 2se(, _

1 2 1

= -n sin c[se(2r a-) - se(27r a - 2se(21r - a - o) (3.27a)
1 2 1

se(a - 2) - se(s-) = se(2w -a-) -s e(2 - a - ) (3.27b))2 1 2

se(, - f) = - se(w - a) (3.27c)
1 1

se(,) = _se(2w- a) (3.27d)
2 2

E-polarization (antisymmetric):

,n s 0(n - ,)-sO(co- ,)J - s[so(t - 4,)

= -,, sin c,'s0(2 -aci- 4,) - 0(2- ao- ,)a - 2s0 (2r,- c- 4,) (3.28a)
12 1I

s°(a . ,) - so(,, V 4,) = sO(2w _- . ,) - s°(2, . c - ,p)
S1 1 2

(3.28b)

s°(a - W) s r - a) (3.28c)1 1

s('I) s°(2= a) (3.28d)

'I 2 2

I

I
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H-polarization (symmetric):

2 sina te(_a - is) - n[te( - i) - te(-
1 1 2

=-2 sinat e(2  - a -) - n[te(21r - a - - te(2w a - g,)I (3.29a)
1 1 2

te(, - i) - te(, - _) =-te(2  - a - i) + te( 2, - a - qi)(3.29b)
1 2 1 2

te(, - )= -t - ) (3.29c)
1 1

te(,) = -te( 2w - a) (3.29d)
2 2

H-polarization (antisymetric):

2 sin a t°(a - ,) - n[t°(a - s) - t°(a - ,)]
1 1 2

= -2 sin a t°(2-f- a - ,) - n[t°(27r -a - i) - to(21r - a - i)] (3.30a)
1 1 2

tO(a - 0s) - t°(a - is) = -tO(27T - - i) + tO(2r - a - i) (3.30b)1 2 1 2

t°(a - 7) t°(w - a) (3.30c)
1 1

t°Cc) = t°(2w - a) (3.30d)
2 2

I,

li 1 1 I .. .... ..... .. "-- " -- i l I ll I I I II I 'I I. ... II I I II
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Again, the subscripts 1 and 2 refer to the values of the

corresponding function in Regions 1 and 2. As noted in Section 2.2

when deriving the boundary conditions, the only difference between

(3.9) and (3.27-28) or (3.10) and (3 ?9 -30) is in the final two

equations, which are considerably siuV'ar in form. However, when

e othe algebraic manipulations are performed which eliminate s ,s° ,
2e2

t ,t as was done for equations (3.23) and (3.24), there appears2 2

to be little gain. The resulting equations are:

E-polarization:

sin(a - 2fl [ - n sin a] s e(, -, p + se(a - 2w +

=-sinc [[1l + n sin(cL - -2rr e(c -27r f + se(a 39,4 (3.32)

sin(ct- 2*) [1 - r sin a] s 0 ( fl - so(a 21r +)

-sin a [I+n sin(a - 29,)] so(c, 1Tar- p so(cl 3p)1  (3.33)

H-polarization:

[n - sin a] te(,- p) + sin ate(a - 2n +,)
1 1

=[n + sin(a- 2*)] te(,-2- ) - sin(a- 2,) te(a -
3 ) (3.34)1 1

n- sin a] t(a-,) sin t(a- 2,r +)
1 1

= [n + sln(a - 2w,)] t°(a - 2x- ,) + sln(a - 2*)t°(a - 35p) (3.35)

1 1
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Similr aree,o e,o
Similar expressions are available for s2 ,2 , or they can be

derived directly from se° , te' respectively. Comparison of1 1

(3.32-35) with (3.23-24) indicates that the decomposition into

symmetric and antisymmetric components has done little to simplify

the form of the functional equations. There has been no reduction

in order; (3.32-35) are still third-order equations. If any

improvement has been made, it is that (3.32-35) are now

"difference" equations, in that the arguments of the unknowns are

of the form a + An$ n = 0,1,2,3, where An is a finite increment,

and the increments are not uniform (i.e., An+ i - An k constant).

It is perhaps in doubt whether any of the techniques available

for solving difference equations are applicable to eqLations of

this type.

Unique solutions for se'°,te are guaranteed by requiring1 1

that they satisfy the order relation (3.20) with a > 0. The

regularity condition (3.22a) must be modified to account for the

presence of additional plane waves in the incident field (see

equation (2.22)); the result is that

1 ~~~(a - 21T + o' (- )'

must be regular in the strip < < Re a < 2w - p. The minus (plus)

sign corresponds to the symmetric (antisymmetric) components,

respectively.
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IEquations (3.32-33) are the fundamental functional equations
for the resistive wedge problem formulated via Maliuzhinets'

method. The author has attempted to solve them through appropriate

substitutions and/or factorizations, with no success. Methods

described in texts on functional equations [36] are not applicable

to third-order equations of this type. Though an exact solution

has not been found, equations (3.32-33) are amenable to iterative

techniques for generating approximate solutions. However, it is

not within the scope of this work to pursue those methods here.

Instead, an alternative formulation based upon the Kontorovich-

Lebedev transform is presented in the next chapter.

I

I
I



CHAPTER IV. THE KONTOROVICH-LEBEDEV TRANSFORM

4.1 The Kontorovich-Lebedev (K-L) Transform and Its Relationship

to the Maliuzhinets Representation

In 1938, two Russian authors, M. J. Kontorovich and N. N.

Lebedev,put forth a cylindrical or radial transformation, along with

the corresponding inverse, which is analogous to the LaPlace (or

Fourier) transform in Cartesian or linear coordinates [21]. The

transform, which now bears their names, found applications in boundary

value and diffraction problems where the unknown functions are defined

along the radial coordinate p of a cylindrical coordinate system

(p'0'Z).

If the K-L transform of a function f(p) is denoted by

f(v) = K[f(p)] , (4.1)

where v is the transform variable, then, similarly, the inverse

transform is written as

f(p) = K-1 [f(v)] , (4.2)

provided both K[f(p)] and K 1 [f(v)] are defined.

In [21], the transformation is presented in the form of a

theorem providing sufficient conditions on a function f(v) for the

inversion (4.2) to exist. The theorem can be stated as follows:

-56-
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I Theorem 2:

Given a complex number k = Ikle t , 0 < 6 < w, and w(v) a function

i of the complex variable v = a + iT, with w(v) satisfying the following

conditions:

l 1. w(v) is regular (analytic) in the strip IRe vI < 8, a > 0,

i 2. w(v) is an even function of v, i.e., w(v) = w(-v),

3. the integral

f (o + ir)w(a + iT)fe dT <I -

for all iol < 8, and

4. I(o + iT)w(a + iT)I e 6T+( n /2)(IT I-T) -0 as +TI

I uniformly for all lol < 8.

Then supposing that

l()pwpe i "(12 )pJ (kp)dp2 f~f(P) = "- w )'

i where p > 0, it follows that

Sw) = f(p) el(7r/2)v H W)(kp) dp

I for all v in the strip IRe vi < 8.

The function J and H(1) are the Bessel function and Hankel

function of the first kind, respectively.

I From the results of this theorem, it is convenient to define

the transformed functionI

I
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f(v) = w(v) e-iC7/2)v (4.3)

whereby it follows that

f(v) = K[f(p)] f f(p)HO')(kp) -'L (4.4a)
foV P

0

f(p) = K-1 [f(v)] = . vf(v)J(kp)dv

Sf v sin vi f(v)e iv' H(l)(kp)dv , (4.4b)
T V

the second integral being a result of the properties of JV and H.I

It is important to point out that the transformation put forth

in the manner of Theorem 2 must be used with caution. By assuming

properties for f(v) (i.e., w(v)), and then defining f(p) via (4.4b), the

theorem restricts the class of functions for which the transform (4.4a)

exists. In practice, it is the properties of f(p) which are known,

and therefore it is necessary to show that f(v) exists as defined by

(4.4a), and that the expression on the right-hand side of (4.4b) does

indeed return the function f(p).

To this end, Jones, in a recent paper [22], derives sufficient

conditions for f(p) such that the transform integral and its inverse

(4.4a,b) exist. In particular, Jones defines the inverse as
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I

f(p) = K'[f(.v) = lim eCV2 v f(v)J (kp)dv (4.4c)
I - 0+ 2 j

I in order to guarantee its existence under the assumed properties of

f(p). An outline of Jones' theorem, and its relation to the properties

I of the functions of p expected for the resistive wedge, are given in

Appendix A. Henceforth, all transformations and inverses in this

chapter will be assumed to exist, either in the sense of (4.4b) or

(4.4c), based upon the results of the appendix.

It is interesting to note that under certain conditions, there

Iexists a relationship [24] between the K-L transform of f(p) and the

Maliuzhinets representation

f(P) I eikpcos s(a - *)da , (4.5)

Y

Iwhere the explicit dependence of f(p) on * has not been shown, and

where y is the contour of Fig. 3.1. Using the symmetry of the contour

y = Y1+ 2 and letting

S= 1 [s -( ) - s(2w- - *)] , (4.6)

I
(4.5) becomes

I
I f(P) uelkcs f (at)dc (4.7)

T ,

I

I
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As outlined in Appendix A, if f(p) = 0(p1 +a e bp), where a,b > 0, then

the integral equation (4.7) has a unique solution within the class of

functions

f(a) = O(e(1-a)uIm al) ; Im ! +a

where f(c)/sin a is analytic within and on y, given by

f() = ik sin f f(p) e i kpcosa dp (4.8)2 f

Note from (4.6) that f(c), as well as y, are odd about a = i, i.e.,

,(a) -i(2i- a)

implying from (4.7) that

f(P) j ei  s f(a)da . (4.9)

Y

Maliuzhinets has shown [51] that in the event the constant a >. 1,

or equivalently, that f(a) is bounded at the end points of y, then

A

f(O) = 21f(i-) .(4.10)y{
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I From Appendix A, the existence of the K-L transform of f(p) requires

f(O) and hence f(i-) to be zero. With these restrictions on f(a),

it can be concluded that f() is regular in the strip w/2 - e < Re <

3w/2 + c. Based on this fact, and defining the Fourier transform

g(v) - J f7(c - w)eiva d , (4.11)

I which is absolutely convergent in the strip IRe vi < a - 1,

Maliuzhinets has shown [24] that

IV
fe- e ( / 2 ) v g(V) .(4.12)

I Equations (4.11) and (4.12) thus establish a Fourier transform

relationship between the K-L transform (4.4) and the Maliuzhinets

I representation (4.7) of the function f(p).

I 4.2 Application of the K-L Transform to the Scattering by a

Resistive Wedge

Recalling the geometry under consideration, the electromagnetic

I E- and H-polarized fields (U,V) scattered by a resistive wedge can

be written

I V • i + S (4.13)

.where

w ui i  e-ikpcos( -o)

I
I
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is a plane wave incident upon the wedge at an angle *o from within

Region 1 (see Fig. 4.1). The included angle of the wedge is 2V*.

The fields (U,V) satisfy the Helmholtz equation

(v 2 + k2) = 0 (4.14)
V

in Regions 1 and 2, as well as the boundary conditions (2.6), (2.7),

the radiation condition (2.9), and the edge condition (2.12). For

the time being is assumed that Im k > 0. Equation (4.14) is also

satisfied by the scattered fields (UsvS).

Throughout the remainder of this analysis, it is convenient to

define the modified scattered fields (denoted by lower case letters)

u(p,0) = US(p,O) + ceikP (4.15a)

v(p,O) = VS(p,o) + deikp (4.15b)

where

d vS(o ,) 
(4.16)

The quantities c,d are independent of * within each of the

Regions I and 2, which simply means that the scattered field is

uniquely defined at the apex of the wedge within each region. As

was discussed in Section 2.1 regarding the edge condition (2.12),

it is possible for d to take on two values, one each in Regions 1
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~I,

~I'

I Y /

l (u'vi) //

"I _ _ _ _

l Region 1 Region 2

I 0=2n-'P

Fig. 4.1: Geometry for the Application of the Kontorovich-
Lebedev Transform to the Scattering by a Resistive
Wedge.I

I
I
I
I
I
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and 2, but due to the continuity of U across the boundary, the value

of c is the same in both regions. From equation (4.16), it is

evident that (u,v) are zero at p = 0.

Expressing (4.14) in cylindrical coordinates, and substituting

(4.13) and (4.14), the following equations for (u,v) are obtained:

2 + 2- +2 + k2p 2  = ikp . (4.17)
Dp2 3P ;2 V d

Assuming the additional constraints

lim = lim = lim 2 u = 0 , (4.18)
p P v v 3 v

which are consistent with the edge and radiation conditions for p and

@-directed components of the scattered fields, then application of the

K-L transform to (4.17) leads to a differential equation for the

transforms (u,v) [21];

A- 2 + V2 u ______ 2v e -i( (4.19)
d¢v(s) r d

The general solution to this equation can be written in the

form

[ ' 1 [ A(V) ] B(.) 121 eli(w/2)v (4.20
j [C(V) cosv + DM sin + v sin v -[d (
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* gwhere the arbitrary functions A,B,C, and D are independent of *. The

task is to find specific values of A,B,C, and D such that (u,v)

I satisfy the appropriate transformed boundary conditions. In terms

of (u,v), the conditions are:

E-Polarization:

u 11  3u, ik - 21kg ikpcos(ip- ) lkp

~wi u Ce o -ce

I (4.21a)

I 14 -u2 1 0 (4.21b)

I u 21 ;2i u I = .p[ _, os(,,o_ cekP 3
II *-€- =2ir-p € *-i -=_ " *2 r = 2 ik - UbV1

n1

(4.21c)

uI. u I (4.21d)

I

I
I
I
I
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H-Polarization:

2 j 11 . 0
3V 1  .1kr~p v = psin o fkpcos p-* )

- n (d - d )elkP ] (4.22a)

- 3 0 (4.22b)

- p v - v
4,=2 1 -,p, )" ,=2 7-* 2 1,=.,

ikP sin(* + *o)eikpco s(*+ @o) - a (d- d )ekp (4.22c)

3TI=27r - = 0 (4.22d)

The K-L transform of equations (4.21) and (4.22) are obtained

directly by multiplying each equation by (1/p)H,' ) (kp) and integrating

along (0,-). The results are:
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E-Polarization:

I +~~fn H(l)(k,))dp

I~ I=4 - v

4i e 0vi

41TI /2c sin v (r -v +i ~ 0 *-- (4.23a)

-~ = 0 (4.23b)

12
du du -2kf~ ~ pd

n J
3 0c

1 41 e1(n/2v - Sn( -*-)(4.23c)

n T sin vnr sin(o +4,

- = 0 (4.23d)

I H-Pol arizatlon:

dV, + in. (vJ vj )H~')kp'dp

0

=21 ..... [(d -d )v + sin A~n -*+ 4, (4.24a)

d -il =V1 0 (4.24b)

do d
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dv 
f

-ikn I( v VI H( ' )(kr )d.
doo2r 2 22ir-=p

0

s2 i C d ) - sin v(r - - ) (4.24c)sinvi 2 1 20

d - - = 0 (4.24d)

Some note regarding the regions in the complex v plane for which

equation (4.20), and boundary conditions (4.23) and (4.24) are defia,

is necessary at this point.

For (u,v) = O(p), a > 0, it is shown in Appendix A that (u,v),

and hence the left-hand side of (4.20), are defined for lRe vi < 6.

Inasmuch as the unknowns A,B,C and D are determined, the RHS of (4.20)

may or may not provide an analytic continuation of (u,v) into any

additional regions where it is properly defined.

From similar considerations, the LHS of (4.23) and (4.24) are

also defined for lRe vj < 6, while the RHS are analytic in IRe vj < 1,

having poles at v equal to a nonzero integer.

It is important to note the various regions of analyticity of

the transformed quantities, since the inversion contour of (4.4b,c)

must lie within the intersection of these regions.

With these caveats in mind, equation (4.20) may be substituted

into the transformed boundary conditions in an attempt to determine

the unknown coefficients A,B,C, and D (each defined in Reyiuns 1 and 2).
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From (4.23b,d),

A (v) cosvp + B (v) sin v4 - A (v) cos vp - B (v) sin v = 0

1 2 2

A () cos v(27 -4) + B (v) sin v(27 -4')- A (v) cos v*
1 1 2

+ B (v) sin v4 = 0
2

I implying A (v) = cos v(7 -4') [A (v) cos vir + B (V) sin vur] (4.25a)
2 CoS V I

B (v) Sin v(w -4') [A (v) sin vir - B (v) cos vi] (4.25b)I 2 sin v' 1 1

Similar results can be derived from (4.24b,d), i.e.,

C Mv) sin . - ) [C (v) cos vfr + D (v) sin v7r] (4.26a)2 sin v 1

D (v) o- c '" - 4 [C (v) sin vw - D (v) cos yn] (4.26b)

2 COS V4 I I

ISubstitution of (4.25, 26) into the remaining boundary conditions
I (4.23a,c) and (4.24a,c) leads to the four rather complicated equations

below:

E-Polarization:

V sin wn [-sin v(r - f)A (v) + cos v(T - 4) B (v)]
COS 0 sin v + 

1 

1
+ 2ik u] H(l)(kp)dp =K(v,*)(42a

I)
I0
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co v*sinv1T [-sin v(n + p) A +v +cos v(r ff B 1(v)]

2ikT * ull H~l)(kp)dp -K(v,-ip) (4.27
0

H-Polarization:

-v[C1 (v) sin vip- D(v) cos v~li kn f--j (v vl

*H~i)(kp)dp =L(v, ~ (4.21

-v[C (v) sin v(2ir D 1p (v) cos v(2r -i)

- k!i f( v1  v~ =)H(')(kp)dp = - ,

(4.2

The functions K(v,tp) and L(v,0p are given by

4 e- i(7/ si ( - o+tp
K(v, p) = c r2 v~ - snin 0 - ) , (4.2

L(v), ) = 2i eSin [ i) (d d d)v + sgn *p sin v(7r

(4.4'
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Equations (4.27) and (4.28), defined in the strip IRe vi <

min (6,1), are a pair of coupled equations for the remaining unknowns

I A ,B,C,, and D , and their solution provides all that is necessary

for determining the unknown transformed fields (u,v). However, these

I equations cannot be solved explicitly in their present form, due to

gthe presence of the "untransformed" fields (u,v) under the integral

signs.

ITwo methods for simplifying (4.27) and (4.28) by eliminating

the "untransformed" fields are presented in the following subsections.

IIn 4.2.1, an approach leading to second order difference equations is

developed. The technique parallels that used by Lebedev and Skal'skaya

[23) in solving the impedance wedge problem. A second, more general

method leading to Fredholm integral equations of the second kind for the

unknowns is described in 4.2.2. The method, developed by the author,

allows the well-established theory of linear integral equations to be

applied toward solving the equations.

4.2.1 Difference Equation Method

The method to be presented requires that one of the following

two conditions is satisfied by the unknown functions (u,v);

(1) s > I, or

C2) (u,v) may be analytically continued into the region

lRe vi < > 1.

The net result of either of these requirements is that (u,v) or their

continuations are analytic in the strip lRe vi < I + c, £ > 0. For

A
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the moment it will be assumed that such is the case. Whether it is

indeed true will be discussed in another part of this work.

Equations (4.27) and (4.28) are now multiplied by ei(r/2 )v,

and then v is replaced first by (1 + v) and then by (1 - v). The

resulting set of equations in (1 + v) have a common region of

analyticity with the corresponding set of equations in (1 - v), which

from the above requirements is given by IRe vj < c. By subtracting

one set from the other, and making use of the identity

ei (i/2)(l+v) H(i)(kp) - ei(/2)(1") H} ) (kp) = L-2 ei(T/2)v HM (kp)

(4.30)

there results a new system of equations for the unknowns A,, B1 .

C1 , D1:

E-Polarization:

p+(l + v)F(l + v) - p+(l - v)F(l - v) + q+(l + v)G(I + v)

q(l -v)G(l -V) cos * F(v) + sin viG(v) 8 O os vn-o+)
-~~ n+l-vG1- )- - sin vir

(4.31a)

p.(l + v)F(l + \) - p.(l - v)F(l v) + q.(l + v)G(l + v)

q (I v)G(l - v)+ [cos v(2w - )F(v) + sin v(2r -)G()]

= - 8 V(- - (4.31b)
Y1 sin v( ,
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wh r 
- sin vnr sin v( wr T ,

* ~sin vi$, cos vip

q+(v) =sin vir cos v (7r ;ip)
sin vi* cos vi*

and

F(v) =v e i(7/2)vA1 (v)

G(v) =v e i(1T/2)vB (v)

H-Polarization:

sin(l + vOiF'(1 + v) - sin(l - v)ipF' (1 v) - cos(l + v)ipG' (1 + v)

+ cos(l - v)ipG(l -v) + n~~vF()-p+(v)G'(v)J

=4i1i( 0 ip)cos V(W 0 + (4. 32a)

sin[(i + v)(2ir - i)PflF'( + v) -sin[(l - v)(2r - ip)]F' (1 - V)

-COS[(l + v)(2ir - *)]G'(l + v) + cos[(l - v)(2ir - *flG'(1 -V)

p~vG'v) =41sin(o 0 + ip)cos V(7t 0 (4.32b)
-n[q_(v)F'(v) - pvG() 1sin v-ir

where

F'(v) * e1 i(i/2)v C M~

G'(v) = e1 (n/2)v Dl(v)
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Equations (4.31) and (4.32) each constitute a pair of coupled

second order linear functional equations for F(v),G(v) and F'(V),

G'(v), respectively. Although one may observe several symmetries

associated with the equations, there is no straightforward means

for finding their solutions known to the author.

Certainly the task of developing expressions for F and G

(and likewise F' and G') would be easier if the functional equations

could be uncoupled.

To this end, the decomposition derived in Section 2.2 is

applied to the transformed functions (u,v). From the equivalent

of equation (2.18), one can define[ u~ [e (V.0) + u 0(v,O)1 1 1 (4.33)

2 -ev)o2 + -o~ v o
iv NO) + v(v)

where

u e 'O  u _ _) U (v,27r - 0)
1 1 (4.34)
ve,°  -
JvO [ u(V,O) ± u (v,2nf - 0)
1 .1 1

The plus (minus) signs correspond to the symmetric (antisymmetric)

components. It is convenient to write, analogous to (4.20).
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ueo [eo(.,) eo(V,) eo
= Cos ¢ + sin vo + 21e-i(r/2)v 1

veo Ceo( v ) Deo(.) v sin w deo
L1 J 1 d 1 j

(4.35)

Substituting (4.35) into (4.33) leads to the following results:

A = .1 [Ae + A0 (4.36a)2

B = 1 [Be + B , (4.36b)

and similarly for C and D . In addition, from (4.34)1 1

C = 2c
1

de = 2d1 1

c = do  =0I1 1

From either (4.34) or the transforms of (2.24c,c') and (2.25c,c'), it

is easily shown that

dd~e
To 0 f 0

I1 . = V=0,h

0 00

l loft ,
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which is equivalent to

[ = tan vf [1] (4.37a)

By substituting (4.36) and (4.37) into the appropriate functional

equations (4.31) and (4.32), and defining

[Fe (\)).Fe(v) = v ei(7/2)vtan v)r[Ae(v),Ce(,)] (4.38a)
1

[F0(v),F'(v)] = v e o(t2)v[Ao(,),Co(v)] (4.38b)
1 1

one can obtain, after considerable algebraic manipulation, a set

of four uncoupled, linear, second order functional equations:

E-Polarization:

F e(l +v) Fe(l - 4 cos v -) F ()

cos(l + v )v "cosTT1 -- v) - sin vn e

161 cos v(w - *o)Cos * 4 .
n sin " - "

I
I
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I ~~ FoIl + v) Foi -0sin(1 + v) S (l ) I sin vr- ) Fo(v)

6 sin v(s o)sin -

11 sin w (4.39b)

i H-Polarization:

sin(v) sin[( - v)( F(1 v)

sin(l + v.r e sin(l - v)wr

I Fe(v) 4i [sin(,0 - *)cos w( - + ,)-sin v sin vw 0

1
-sin 4 + *)cos v(-r- " -)] (4.40a)

ces[(1 + VX7 -¢) Foi(l + ) Cos[(' - ) Foil v)

'I sin( l+v Or 0i~ ~v7r0

Fo(v) 4i~ [sln( *~)Cosv~ -s~n +
COS v4, 0i ~

+ sin(O0 + f)cos v(7r - ) )] (4.40b)

I
Equations (4.39) and (4.40) are the fundamental functional

I equations for the resistive wedge scattering problem. While an

m equation of similar type has been solved by Lebedev and Skal'skaya

in [23], the author has not been able to generate a solution using

I their method.

I
|
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A general solution to any of equations (4.39,40) can be

written in the form

F(v) = P (y)F(1)(v) + P (v)F(2(v) + F p(V) , (4.41)
1 2P

where F(1),F(2) are the two independent solutions of the corresponding

homogeneous (RHS = 0) equation, and F p(v) is a particular solution

of the inhomogeneous equation. P and P are arbitrary even periodic
1 2

functions with period unity.

Determination of a unique solution to (4.41) requires

restricting the solution to a particular class of functions

satisfying a specified analyticity condition, along with a

prescribed behavior as Jim vI , .

More specifically, it is possible to write

- e H1)(kp -- (4.42a)

Fe(v) = -4ic + ve i(-/2)v sin vrj uel H (k) (

O00

Fo(v) vel i(1/2)v sin vf( u H(l)(kp) -dP_ (4.42b)

0

with identical expressions for Fe' in terms of ve, d , and for Fo(v)e1 10

0in terms of v where
1

u ue + u(4.43)
2 e 0v ve + v°
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From (4.39-4.43) and behavior of (u = v 1,..) at p = 0
and for p - -, the following conditions are satisifed by Fe,Fo,F;,Fo:

1. F eF are even functions of v, while

F,Fo are odd functions of v.

2. The function Fev) is analytic in the strip IRe vi < 6,

where ue = O(p), 6 > 0, for p P 0. Similar results hold for

Fo F ' F ' in terms of u°,v ° ' , respectively.

3. The function F (v) approaches zero when IRe vi < 6 ande
lIm vi + =, provided uel contains no geometrical optics scattered

1 On%

fields (recall the decomposition (2.8)), which is always true for

o 2 > 0. Similar results hold for FFo', and Fo. In [23],

Lebedev and Skal'skaya write Fe(v) = Feg(v) + Fed(v), equivalent

to (2.8), and then state that Fed(v) _ 0 for IRe v1 < 6,

Im vi -). - for all 0,*. This is unnecessary, since by solving the

problem for o 2p > 0, (whereby F e = 0), the solution for

o " 2* < 0 can be obtained via an appropriate analytic continuation.

Further discussions regarding the behavior as Im vi - can be found

in Appendix A.

Conditions (1-3) above are sufficient to uniquely determine

the solution (4.41).

When n = 0, equations (4.39) can be solved directly, yielding

I the known solutions for a perfectly conducting wedge (E-polarization)

Fe(v) = -41 cos * (4.44a)

sin v(n - *o)stn v(.

F°(v)f~o I 41 sinv - ') (4. 44b

!
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Although the solution to (4.40) (H-polarization) with n = 0

cannot be as easily deduced, the resulting equations can be solved

via Fourier transform techniques, yielding the correct expressions.

Furthermore, it is relatively straightforward to solve (4.39-

40) for the special cases = 0, n/2 , corresponding to a resistive

half-plane and full plane, respectively. Both solutions are known,

the latter being the simple geometrical optics reflected and

transmitted plane waves, while the former having been given in

[27,28].

The lack of available methods for solving functional equations

of the type (4.39-40) has prevented the author from obtaining an

exact solution for arbitrary values of $p. However, since (4.39-40)

were derived from (4.27-28) based on the assumption that (u,v) were

analytic in a strip lRe vi < 6, with a > 1, it is reasonable to ask

if a different set of equations, replacing (4.39-40), can be derived

in the more general situation where 6 > 0. Such a derivation is

presented in the next section.

4.2.2 Integral Equation Method

The starting point for this section will be equations

(4.27-28). It is beneficial to immediately express them in terms

of symmetric and antisynmmetric components. This is achieved by

substitution of (4.36-38), then adding and subtracting (4.27a) and

(4.27b), and similarly, (4.28a) and (4.28b). The net results are

the following:



I
I

E-Polarization:

Fe ) 2ik ei(1r/2) e H('(kp)dp
CO 4 n V=

- + sin v( r "- +p) sin v("lr ° p) 1

= cs 2cv - sin(r - 4o +  ) s - j (4.45a)

SFo(v) 2ik i(it/2)v

e uO t H( (kp)dp
sln vP n I Vf

4i r s i n v(Tr , + €)  sin v(w 0" €  44b4i 00(44b
" 1- - sc11 sin(7t - € +  

*
)  s'i'n(r -o " )  J

H-Polarization:

sin v(v) + ikn ei (Tr/2)vf e e] H()

sin vi Te(v 2 f €= (pd

0

= 21 csc v7r[nl(d - d ) + sin v(r - + p) - sinv( - o-1 2 0

(4.46a)

II
COSV(i " '(v) _ "kn ei(w/2)v o  v0I,_.F H(1)(kp)dp

.1 0
= -2i csc vn[sin v(r - 0 + ¢ ) + sin v(7 - 0 (4.46b)

* From this point on it will be assumed that 0 2- > 0

(implying p ff/2), which for reasons stated earlier allows Fe(v) 0

I for Ilm vi * -, IRe vj < a. Similar behavior is exhibited by

FoF', and Fo.I
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In [23] it was shown that by decomposing ue in geometrical

optics and diffracted components, i.e.,

ue  ueg + ued (4.47)

1 1 1

the transformed quantity u eg satisfies all the conditions of
1 1

Theorem 2, and hence the following representation is valid

ue eg - - e sin -g e) -eg)
1 1 4 I [u1 ) H 1 (4.48)

Therefore

[u e - Ue]H(l)(kp)d -- H~i)(kp)-

0 0

sin P [u - ueg ]ei  H(')(kp) du dp (4.49)

From the conditions of Theorem 2 along with results from [21], it is

allowable to exchange the order of integration in (4.49). With

the aid of the identity

e i(7/2)x H(1)(kp) L K (-i kp

the integration on p can be expressed in terms of the integral

[52]
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I

i ,2  -i(i12)v[cos '. + cos v%3-1

e-i(r/2)vf K (-ikp)K,(-ikp)dp = e

IRe p + IRe vi < ; Im k 0

i
The net result is

e .( eii(/2)v

-00g 
2k

0 1WlsnPT[edg] (rr/2)v
COS ]JIT + COS vir

I. I1- di (4.50)

Jones has shown [223 that the integral

uge(,) = ugeH(1)(kp) dp (4.51)

S10

is uniformly convergent for Re 
i 0 0, and hence (4.51) may be

substituted into (4.50) and 
the order of integration exchanged;

therefore

ieei (r/2)

e gej,11 i (ff /2 sin pvu
1 ~ ~~ du__________

u u (kp)dp Cos V + COS 7

1 gei(l2)v d C _ sin T __ H(l)(kp)e i(w/2)P du

2k f u/fe cos pw + cos vi

0 P ia
(4.52)

I
I
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e1  f J K,(-ikp)K (.-ikp)dp = 2 e [cos wpr + cos VW]i

0

IRe ul + IRe vi < 1 ; Im k > 0

The net result is

u - ue g ] H(1)(ko)dp 1 e-(i/2)v

0I isin riue _ uegjei(Tr/2)v

J 1 du (4.50)
fiO COS pw + Cos VW

Jones has shown £22] that the integral

uge(,) =f u _ (4.51)
1 1 l P

0

is uniformly convergent for Re p = 0, and hence (4.51) may be

substituted into (4.50) and the order of integration exchanged;

therefore

~ sin e i(ir/2)31
[ue _ uge]H()(kp)dp = - ei(7/2) ) j sin pw u :e

fc V 2k -C eCOS p~r + COS VW d

0 ia
1 e-i (ir/2) I u gJ e _ ( sin wir H(1)(kp)ei(w/2)W d
2k VJ P JI COS pr +COS VI k

(4.52)
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By means of the identity

ei(r/2) H(1)(kp) = .kp [K (-ikp) -K+ 1 (-ikp)]

it follows that

isin vp ei (w/2 )p m()k~j

COS P + COS V 1

i'D

kP fs cos cos w [Kp1 (-ikp) - K (-ikp)]du

-i'D

k_ + sin p-a K (-ikp)du (4.53)
COS UW - COS VW V

The function K (-ikp) is analytic within the strip 11m ul < 1, for

Im k > 0, and IK (-ikp)l - 0 as JIm uI within the strip.

Therefore, (4.53) may be evaluated using residue theory, whereby the

terms on the LHS and RHS of (4.52) containing uge cancel, leaving
1

ueH(1=(kp)dp e-i(?r/2)v P sin p r ei( /) u Ue(,)di

1 V2f COS + COSvl 1W

0 -i' (4.54)

IRe vi + IRe u1 < 1 ; Im k > 0 .

It is easily shown that

-i (it/2)p
ue() sin = [Fe(u)cos p( - ) + 41c] (4.55) I

I



and in addition,

i-.

41c du = - (4.56)
COS 1r + COS Vr sin vw

Substitution of (4.54-56) into (4.45a) results in an integral

equation for Fe(v), viz

Fc(V cos P(-) cos Ap (,)d,

e~ COS Ir + COS )lr e

4i cos r sin v( - + ) + sin v(ir- to "0s) (

n1 sin vir sin(*o - i) sin( o + q) 4

IRe vj + IRe yj < I

Equations analogous to (4.54-56) exist for the functions u ,v°,vev
1 1 2 1

and v0 ; hence it is possible to generate similar integral equations
1

from (4.45b) and (4.46) for Fo,F e , and Fl.

Prior to presenting the integral equations, it is convenient

for later analyses to put v = it, )I - ', and define

[fe(r),fo(T)] - [Fe(it),Fot) ]

(4.58)

[feC ),fo(*)] - [Fe(it),Fo(iT)]

e o e A
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In terms of the new unknowns, the integral equations can be written

as*

E-Polarization:

f() + 2 f ch(w - p)t'ch 7P fe(T')dT'fe ch T'' + ch e

0

4i ch [ sh(r -0 + *)T + sh(n - - (4.59a)
n sh 'rT I sin(Oo - ) + sin(€0 + *) (5

2f sh(A -L)T' sh 4 0(r,)d

fO( ) + - ch Wr' + ch WT

0_ _ h (r - 0 + ) T s h ( ir - 0 1 4 5 b4 h h(T - 0o(.5b= n sh 7t sin(¢0 - sin(O o + v)

H-Polarization:

f'(T)f sh WT' sh V.T 'eef + sh(rr - $)T ch nT' + ch Wt

0 41 ch( - o )T sh '( .0

= 41 sh(t - , (4.60a)

f = sh wT' sh WT 0 fO ( ')
fo ) + 2 ch t' chw - €p)= ch VT' + ch ird

0 sh( - 0o)' ch T14
=4 ch(w - *)T • 46b

The functions sh( ), ch(. ), represent the hyperbolic sine and cosine
functions, respectively.
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The even or odd property of each unknown has been used to

reduce the integration interval to the semi-infinite line [0,-).

Equations (4.59-60) are the fundamental equations for the

resistive wedge scattering problem formulated via the K-L transform

technique. The author is unaware of any derivation of this type in

the literature on the transformation. The equations are Fredholm

integral equations of the second kind (when n $ 0).

All four equations can be written in the form

f(T) - K(Tr')f(T')dT' = g(t) ; 0 < T < (4.61)

0

The functions f(r), g(,r) are simultaneously either even or odd

functions, while K(T,T') is simultaneously either even or odd in both

T and T'. The parameter x is proportional to either n (H-polarization)

I or n_1 (E-polarization). The kernels of the Fredholm integrals are

all bounded in the quarter-plane 0 < T < -, 0 < T' < -. In addition,

I the following order relations hold

I IK(T,T')I = O(e"*IRe TI) IRe T I 4 (4.62a)I
for T ' = constant. LikewiseI

I IK(T,T')I = O(e"(w-*)!Re T'I) ; IRe T'l (4.62b)

for T = constant. As a result, it can be shown that

I
I



-88-

f jK(.r,')J dr < ; for real '

o (4.63)

f IK(T,T')I dr' < ; for real T

0

i.e., the kernel K(,T') is absolutely integrable in both T and T'.

However, it is not integrable in the quarter-plane, that is to say

f 00f'* IK(T,r)12 dr dTr

0 0

is unbounded. Furthermore, the inhomogeneous terms g(T) of the

integral equations (4.59-60) satisfy

Ig(T)l = O(e '( o ' *)IRe l ; IRe TI (4.64)

Since it has been assumed that o - 2* > 0 for this analysis, it is

also true that

f Ig(Tl)dT < - (4.65)

0

The analyticity properties of the kernels and inhomogeneous terms,

represented by K(r,r') and g(T) respectively, are also easily determined,

and can be summed up as follows:
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Lemma 1:

There exists a 6 > 0 such that g(T) is analytic in the strip

r)Im T) < 6, and g(T) decays exponentially to zero as IRe TrJ -

uniformly within the strip.

Similarly, for the same 6, the kernel K(t,T') is analytic,

as a function of both T and T', in the region

IM T <l 8 U )IM T' < 6

In addition, K(r,T') decays exponentially to zero as IRe rf - ,

I uniformly in JIm r( < S, provided T' is held to a constant within the

strip JIm T'J < S. Similar behavior holds as a function T' when T

j is constant.

i
The properties described in Lemma 1 will be used in Chapter V

I in order to develop an iterative solution to equations (4.59-60).

Once again the author has not been able to derive a closed

form solution for the unknowns represented by f(T), except in the

( special cases n = 0 or 0 = 0, r/2. However, the formulation of the

problem in terms of Fredholm integral equations of the second kind

Iallows that vast wealth of knowledge [37,38,53,54] regarding these
equations to come into play, particularly for iteratively generating

Iconvergent series solutions.
I
I
I
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In the next chapter, an iterative series solution is described

based upon the method of successive approximations (Neumann series

expansion) from linear operator theory, and the convergence of the

series is discussed.



F-' I

I I

CHAPTER V. THE METHOD OF SUCCESSIVE APPROXIMATIONS

5.1 Review of Linear Operator Theory

I Before deriving a series solution of the integral equations

(4.59-60), it is appropriate to review some aspects of linear

I operator theory which ensure the convergence of the series. Most of

the results are taken directly from References 55 through 57.

A complex linear vector space is a set X together with the set

of complex numbers Z, such that for all x,yE X and a,bE Z:

(1) x +y = y +x(G X

1 (2) ax E X

(3) a(x + y) ax + ay and (a + b)x = ax + bx

I (4) a(bx) (ab)x

I (5) 1. x = x.

A normed linear vector space is a linear vector space X

I together with a function lixil on X, such that for all x,yG X

and a E Z:

(1) lxjl > 0 and lixil = 0 if and only if x - 0

(2) llaxil = (al- *lxil

(3) lix + yll I lixll + Ilyll.

I By defining the function g(x,y) - Hjx - yI), for x,y( X, the normed

linear vector space X is made a metric space with metric g.

I
I -91-
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If X is a metric space with metric g defined as above, then

a Cauchy sequence is a sequence xn in X such that for each real B > 0,

there exists a positive integer N for which

g(xnx.) = 1Ixn - XmI < whenever n,m > N

A metric space X is said to be complete if for every Cauchy sequence

xn in X there exists a yE X having

y = lim xn
n

A complete normed linear vector space X is called a Banach

space.

If X is a Banach space, then a linear operator T is a function

from X onto X which is linear, i.e.,

T(ax + by) = aTx + bTy

for all x,yG X, a,bG Z. The linear operator T on the Banach space

X is said to be bounded if these exists some M E [0,-) such that

IITxII :S M.IxI for all xE X

The norm of the bounded linear operator T is defined as

........i l .... .... ..il l i l I . ...I I . .. ...... . . _ _ , ...... . , .. [ .
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ITII = sup IITxIl
xeAI1 I

where A = {xE XI x $ 01.

j If T is a bounded linear operator on X, it is possible to define

the nth iterated operator Tn , n > l, by the inductive equationsI
Tlx = Tx

T2x = T(Tx)

Tn+lx = T(Tnx)

for all xE X. It is easily shown that

jITnIl : IITIIn

theremWith this background it is possible to present the following

theorem.

Theorem 3:

If T is a bounded linear operator on the Banach space X,

with 1THJ < 1, then the series
I

T n

n=1

converges in operator norm to a unique linear operator To* Furthermore,

the operator

I L = I+T° = I n

nai

I
I



-94-

is defined on X, where I is the identity operator Ix = x, and from

liTnil i Tl in along with
n n

(I - T)(I + E Tp ) = I - Tn+ = (I +E TP)(I - T)
p=1  p=1

it follows that

(I - T)L = I = L(I - T)

and hence I - T is one-to-one onto X with bounded inverse

(I - T) = L I + T

n=1

Theorem 3 allows a solution to the Fredholm integral equations

(4.59-60) to be formulated as a convergent series.

5.2 Series Solution to the Fredholm Integral Equations

The general form for the Fredholm integral equations can be

written, as before,

f(r) - J K(T,T')f(T')dT' = g(T) , (5.1)

0

where f(T) represents the desired unknown. Using operator notation,

(5.1) can be written as

(I - T)f = g , (5.2)

where the linear operator T is given by
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Tf = xj K(T,T' )f(-d'r' . (5.3)

0

It is desirable to select a Banach space X such that T is a

* bounded operator on this space. The results of Theorem 3 can then

be applied to equation (5.2) to generate a series solution for f(T).

l In order to specify the Banach space X it is beneficial to

recall the properties of f(T) and g(T), as they must belong to the

space. In particular, from Chapter IV and Appendix A,

1. f(T), g(T) are analytic in a strip Im Ti < a, 6 > 0 and

2. f(T), g( ) -)- 0 as IRe TI -
" uniformly within the strip

I for €- 2* > 0, implying * < w/2.

If the region -- < T < is denoted by a, then from (1) and (2) above

1it follows that

I sup jf(T)j <
x(tea

I and similarly for g(T), i.e., f and g are bounded in a.

Therefore, consider the linear vector space X defined as the set

I I of bounded functions of T analytic in the strip jIm Tj < and

hence continuous on the region a. The norm of f(T)6 X is defined as

I I lfIl = sup f(T) (5.4)

I From a theorem of topology (see for example, pp. 84, 108, 216 of [57]),

it follows that X is complete, and hence X is a Banach space.

'1

I
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In addition, from (5.3) and the definition of the norm it follows

that TxG X for all x( X, and thus T is indeed a linear operation

from X into itself.

With the norm as defined in (5.4), it is possible to show that

the operator T is bounded for the kernels K(T,r') occurring in

(4.59-60). In particular,

IITfIJ = sup Ix S K(T,T')f(T')d-r'I
TEa 0

sup IxI K(T,T')Id' suplf(T)I
TEa 0 TGa

< IXi Ilfil sup S IK(T',T')IdT' (5.5)
Tea o

Consider the various kernels of (4.59-60).

E- Polarization:

I Ke(TT')IdT' = ch *T ch(ir " )T1 dT'e , )lT ch 7T' + ch 7T

0 0

= ch i sh(- T 1 csc4l - sh - 2*)IT ]sh VtT sin T = rS 1-sh irT

0(,.')[ dT' = sh ch +ch 5z lrTd

o 0

c T ch(7 - *b)T' dT'
< ch'Jrr ch rT' + ch VT

0

1 csc L - shrfT- ]
sh 7rT

2i
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implying

Isup IK eC~' (TT')IdT' < -sl CS (5.6)

Likewise,

l-Polarization:

C1  (,, ''1dT' sh 1iTt sh IrT' [ch WTt' + ch ir] 1 dr'
shil 117 sh VT'

0 0 0

t shiTrT ch(r - )T' dir
~,sh(in - *)T ch WTt' + ch WTt

= i hir shni C T +CVTd

0 0

2 sh Tr sh(r O

ch-Yir ch 7t + Ccfi, dTt ' c iJd

I 0

<2 sh Irt sh( -YT 2 2csc Jth(ir4*)t

Iimplying 
c~ ) nW i

sup it~,',o(,'Id'<1CC4 57

iT tea o -

IThe resUlIts above have made use of the assumption *0 - 2* 0 which

Irequires wp < r2
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It is now possible to derive a set of bounds for the norms of

the various operators. Let the operator T associated with the kernel

K e(T,T') be denoted by T , and so on. From the definition of the norm

of a linear operator, it follows that

ITeToll < csc (5.8)

JT',T'I L l x'l csc (5.9)

where

2
n

2 "

In order to make use of Theorem 3, it is required that ITIH < 1,

and hence from (5.8-9)

Inl > csc p ; for T e,T 0  (5.10a)

Inl < sin ; for Te,To' (5.lOb)

Equation (5.10) provides sufficient conditions on n for the convergence

of the series in Theorem 3.

Specifically, the solutions to (4.59-60) in the Banach space X

can be written as follows:



I
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I f('r) g (T ) +  Tng 5 a)

+ o 0 (5.11 b)
n=1

where

T n , = Kn~o,,r )g ('o') d''e 0ge,o eo ( ' c g o

and

I m nl > csc1

I H-Polarization:

feI() - ge(r) + 2 Tenge(t) (5.12a)

fo(T) = g (r) + Tongo(T) (5.12b)
I n=1

where

e;oge,o 2/ Kne,o (TT')g e,o('" d,-I 0

and

Inl < ?I sin o

The iterated kernel Kn(T T ') is defined via

I ' . . ....... * - -
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K r = K(T,r')

Kfn+1(T,) = S Kn(,rII)K(.r",T ' ) dr" , n > 2

0

Several observations regarding the solutions (5.11-12) can be

made:

1. For E-polarization the solution is in the form of a power

series in n-1 , and is convergent outside the disc Ihi < csc *. For

H-polarization, the series is in powers of n, convergent within the

disc ]l <(2*/w)sin p.

2. It may be possible to extend the regions of convergence of

(5.11-12) beyond the limits expressed in (1) above, since the limits

are simply sufficient conditions for the convergence of the series.

3. The two regions of convergence for E- and H-polarization

do not overlap, and hence cannot be used simultaneously to solve the

problem with an arbitrarily polarized incident field.

4. The series fail to converge for 0 =, at least in the

sufficient sense. This is consistent with Senior's results (10]

which indicated that for the half-plane an expansion in terms of

n also contained contributions of order n In n, and thus could not be

expressed as a simple power series.

5. For E-polarlzatlon, In the limit n + , the unknowns

re' 'o - 0. This is consistent with the fact that for n * -, the

wedge ceases to exist, and hence the scattered field Is zero.
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I
Likewise, for H-polarization and n- 0, the result is fefo - ge'go

the known solutions for the perfectly conducting wedge.

I 6. The series (5.11-12) are uniformly convergent for -r E (--,=)

within the bounds on n by virtue of the norm (5.4). When applying

I the inverse transform to the unknowns fesfo, etc., it is therefore

possible to exchange the order of integration and summation. This

I allows an approximate solution to be generated, with each successive

term increasing the accuracy of the approximation.

The final forms for the unknown transformed fields (u,v) are

I given by:

E-Polarization:I . i/2)v
U1(v) - e [f e(-iv)cos v(r -0) + fo(-iv)sin v(7 - ) + 21c]

2v sin vw

i (5.13a)

e(" ei(wr/2)v Cos v(co
U2 2v sin virle cos V-)

I + fo(_iv) sin sin sinvo + 2ic ]

I H-Polarization: 
(5.13b)

Iv;(v) 2v ei(sin [ fe ( -i v)cos v(w" *) + fo(-iv)sin v(7" -) + 21d,]

e- i (w1 2 )  f sin v( (5.14a)
v2(V 2v sinvl [ .- V sin v* CSV

eCos tI
+ f'(-iv) Cos V" sin vf+ 2d 1 2

where the substitution T = -iv has been used. (5.14b)
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Recall that to invert (5.13-14) directly requires restraining

0 to regions where the geometrical optics fields are zero. Otherwise,

the transforms of these fields must be subtracted prior to inversion

(see equation (4.48) and Reference 23). Having already assumed the

condition o " 2- = c > 0, the appropriate interval on * for which

the geometrical optics field is zero is given by

<- 1 (5.15)

in Region 1, i.e., for u ,v . In Region 2, no such interval exists.

Since it is a difficult task to determine the geometrical optics

field in the interior of the wedge, especially for small values of

*, the half-angle of the wedge, one must first determine (u ,v)

from (u ,v ) in the interval (5.15), and then analytically continue

the result to the surface of the wedge. From the boundary conditions

it is then possible to determine (u ,v2 ) on the surface of the wedge,

and hence everywhere inside Region 2. A more straightforward

procedure is to use Jones' inversion formula (4.4c), and to deform

the contour of integration in such a manner which allows c to go to

zero. This procedure is outlined in [22]. In fact, Jones' formula

can be used to directly invert all of (5.13-14) without need for a

restriction such as (5.15).

It would next be desirable to complement the series solutions

(5.11-12) with similar results for small n (E-polarization) or

large n (H-polarization). Such an approach is considered in the

next section.
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I 5.3 Operator Theory for the Difference Equations

For the purposes of this discussion it is sufficient to

consider one of the integral equations (4.59-60), say (4.59a).

I It is easily shown that the corresponding difference

equation (4.39a), which was derived under the assumption that

Fe(v) was analytic in a strip IRe vj < 6, where a > 1, can be

obtained from (4.59a) under the same assumption. By replacing T

I ;t alternately T + i and T - i in (4.59a), it follows that:

I
fe(T + i) 2 J chirr - ch * f (T')dT' (T + 1)

0

(5.16a)

(T + ch - it4T' ch *(T (I~ d' g(C- )+i ch r ch WT -i e,) , .ge¢r " i)

e 11 chWT hT
0

(5.16b)

Equation (4.59a) is valid for JIM T + JIm T'I < 1, which becomes

JIm TI < 1 since T' is real. It then follows that (5.16a) is valid

for -2 < JIm T < 0, while (5.16b) is valid for 0 < JIM m j < 2.

From the'relation (4.58) between fe (T) and F (), where

v - iT, the requirement that F e(v) is analytic in IRe vi < 6, a > 1,

implies fe(T) is analytic in IM TI < a. This behavior allows one

1to consider the limits as JIm TI , 0+,0" in (5.16a,b), respectively.

1From the formulas of Plemelj (see for example, p. 232 of [58]),

1
1
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mt~O~ ch(ff ~rCh *{r t i L) dr'

__________ chh 
-T ch vS( T1

ch *'(r ± i)ch(7r - tI')T f T + rhwc (
sh wr e ch r -ch wr

0

f e(T') dT' (5.17)

Division of (5.16&,b) by ch 4o(Vr * 1), taking the limit as Jr IM -j

0 + ,0, respectively, and making use of (5.17) leads to

f T+ 1) - 21 Ch(w -C f('T) + ch~ f (f')
ch go (-r +1 i s h irr e j ch.- WIT e

0

ge (T + i)

ge

ch *, 1

Subtracting the former from the latter and inserting the expression

for g e(-r) gives

f CT-1 eC + 4 1 A'
ch *idr -- TT cEh *t. + -1) Sh wh

16 ch(r 0 )Tch *T

rl sh i (.18
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J which easily reduces to (4.39a) by letting T = -iV, fe(-iv) = e(V),

and recalling that Fe(v) is an even function.

I The above derivation suggests an interesting result from

operator theory. In (5.2) the integral equation was written as

I (I - Te)fe = ge ' (5.19)

with Te being an integral operator. Equation (5.18) is then

equivalent to

Te' [(I - Te)fe] (T' -I)f e  - Te'ge (5.20)

where the operator T"1 is the left inverse of T , provided the space
e e

of functions is restricted to those which are analytic in a strip

IN Tj < , > > 1. It is also possible to show that T;1 Is a right

inverse under the same restrictions. Explicitly, Te is defined by
e

T-1 fe " I) fe(T + i)]

I ch(T - [ ch *(T - I) ch ( +) J(5.21)

1 where fe is even and analytic in JIm 'r < 6, 6 > 1. Obviously,

1T' is a difference operator.

Equation (5.20) can be written as

1
(I - T;1 )f -T;1 ge  (5.22)

I
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which leads one to ask if the results of Theorem 3 can be used to

generate a series solution for fe in terms of the iterated operator

(T-l)n, which is essentially a series in powers of ni. Such a seriese

would indeed comuplemuent the earlier result, equation (5.11a), which

expresses fe as apower seriesin n

However, the author has not been able to develop a suitable

bound for the norm of T-, and hence is not able to take advantagee

of the results of the theorem. Nonetheless, with a suitable choice

of a Banach space of functions and operator norm, it may be possible

to prove the convergence of a series in T-1. Indeed, the authore
has shown that the first two terms of such a series produce the

correct geometrical optics fields. Furthermore, when ni a 0, the

series reduces to a single term which is the correct solution for the

perfectly conducting wedge. Thus it appears that the series, even if

it is not convergent, may provide an asymptotic representation as

+0. Similar conclusions regarding the other operators T0  T I0 e-
T' can be made.
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CHAPTER VI. COMMENTS AND CONCLUSIONSI
The electromagnetic scattering of an arbitrarily polarized plane

wave normally incident upon a resistive wedge has been formulated via

a pair of related function-theoretic techniques, the method of

Maliuzhinets [12-14] and the Kontorovich-Lebedev transform method

[20-221, both of which have been successfully used to solve scattering

problems in a single wedge-shaped region.

The goal of the author was twofold: obviously to find an exact

solution to the resistive wedge problem, and secondly, to point out the

similarities between the two function-theoretic techniques as well as

the complexity that arises in applying them to a two-region problem.

With regard to the latter of these goals, the author has shown

that, as with past applicAions, both methods lead to a set of difference

(or functional) equations for the various unknowns. However, if these

methods are simply applied directly, as in the single region problem,

the presence of nonzero fields in two regions produces a coupling of the

unknowns in the functional equations (see equations (3.9-10) and

(4.31-32), for example). By means of a decomposition into symetric

and antisymmetric components, the equations were successfully uncoupled,

although they remained sufficiently complex to prevent the determin-

ation of closed form exact solutions.

One reason for this shortcoming is the lack of a systematic

technique for solving difference equations of order greater than one.

-107-

!
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To this end, the author has developed a novel procedure which,

under less restrictive conditions, replaces the difference equations

of the K-L method with Fredholm integral equations of the second

kind. This allows a large number of techniques to come into play

for the determination of exact and approximate solutions.

One such technique, the method of successive approximations,

is shown to lead to uniformly convergent power series solutions for

certain values of the normalized resistivity n~. In particular, for

E-polarization, the series converge when n~ is large, while for

H-polarization, they converge when n is small. This behavior

prevents the use of both polarizations simultaneously for generating

the solution to an arbitrarily polarized incident field.

Although an attempt to alleviate this problem was made by

demonstrating that the integral operator and difference operator

were inverses of each other under restricted conditions, the author

was not able to bound the difference operator over the space of

functions being considered, and hence could not prove a series

generated with this operator would converge. Nonetheless, the series

does exhibit proper behavior under certain circumstances, leaving open

the question as to whether a bound for the operator does exist.

Certainly, this is an area open to future work. A parallel effort

investigating more accurate bounds for the integral operators,

thereby extending the radius of convergence of the series, is also

worth pursuing.

In addition, the author is hoping to communicate the results

of this work, particularly the functional equations (3.32-33) and
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1(4.39-40), to several authorities on functional equations for their

suggestions regarding possible solutions.

Finally, the reader may find this work conspicuously lacking

in numerical or graphical results. This is not an accident, as the

purpose of the author was to explore the possibility of extending

proven function-theoretic techniques toward finding an exact solution

for the resistive wedge, and in the process, to illustrate the nature

of the complications that arise when these techniques are applied

to a two-region problem. The author believes that the presentation

of numerical data based on an approximate solution is not consistent

with these goals, and hence has reserved this area for pursuit in

the future.

1
!

I



APPENDIX . THEOREMS FOR THE METHODS OF MALIUZHINETS AND THE

KONTOROYV CH-LEBEDEV TRANSFORM

A.1 The Method of Maliuzhinets

The material in this section is derived entirely from the

works of Maliuzhinets [13-15,51]. The basis for his method is

the representation of a function S(p,*) of the polar coordinates

(p,o) in the form of a Sommerfeld integral, viz.

I eikpcos s(aA
1 - O~a(A.1)
7i

Y

where y is a contour in the complex a plane consisting of two loops,

Y1 and y2 " The contour approaches infinity within the shaded regions

where the real part of ikpcosa is negative for positive real k, as

shown in Fig. 3.1, and reproduced for convenience in Fig. A.l.

In [14), Maliuzhinets establishes conditions for the existence

of a unique solution s(a) to the integral equation (A.l) for S(p,o)

satisfying certain boundedness conditions.

Theorem A.l:

Let M,a,b,c,d be positive numbers, and let e,m be numbers

satisfying

ii

jarg ml - 2

-110-



1 -111-

II
II
I I

I

I J 7  I Re a

Function by a Sommerfeld Integral.
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L.

Let F(p) be a function satisfying the inequality

JF(p)J < MIP ll+a ebi
p l

for positive values of p, and also in the entire region

0 < iP1 <

jarg pi < e , 0 < 6, < IT1

where this function is analytic. Consider the integral equation

F(p) = 2 e f(c) da (A.2)
yj

where the contour y' is made up of two loops, y' and y2. The loop

y consists of the two half lines

Rea = argmt+ +

Imct > d

and the line segment Im a = d. The loop y' is symmetric with
2

respect to y' about a = 0 (see Fig. A.2).1

Then there exists one and only one solution f(a) to (A.2)

which is analytic on and within the contour y' except at infinitely

distant points, and which satisfies the additional constraints
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I
I

Im

ImII I
£ I°/ I d - I

I l/ I

I I .- I!

I Re/' ! C i / ,

II I/I/ 1

I I I/  .I

I
I Fig. A.2: The Contour of integration y' in the Complex CL Plane.

I
I
I
I
I
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Mfa~ e al ,,a > 0 (A.3)

This function is represented by the integral

f (c) =-m sin a SF(p)e-m Pcosa dct (A.4)

0

for Re~ni cos a) > 0. For this function, a =a.

Pro:In view of the fact that f(a) is odd, (A.2) can be written as

F(p) = 1 - emPcosc' f(a) dci (A.5)

By making a change of variables, W -e1 (arg m~'cosci, and defining

g(W) =-2 f4S) e-' (arg M) (A.6)

equation (A.5) becomes

F(p) 2= elm I P g(W) dW ,(A.7)

r

where r is the image of I' under the transformation of variables. The

contour r intersects the real axis between zero and ch d, and coincides

at infinity with the rays arg W - ±(c + .),as shown in Fig. (A.3).
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I r

Re W
0 ch d

IFig. A. 3: Contour of Integration r in the Complex W Plane.
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The function g(W) is analytic to the right of r, which coincides

with the interior of the loop y', where f(c)/sin a is analytic.
1

From (A.3) it follows that

Ig(W)l < 4M IWl-al , IWl , arg WI < e + . (A.8)

Multiplying (A.7) by e" 1m 1pW, where Re W > ch d, and integrating

over (0,-) on p gives

F(p)e ' m IPW dp 2P-Tpi dp g(W ) dW (A.9)

0 o r

where the integration is taken as a limit at the endpoints. By virtue

of (A.8) and the fact that Re(Wi-W) < 0, the order of integration may

be exchanged, and the limit taken, which leads to

F(p)e - lmIPW dp = - 17i-T ! W -W) dW1  - ' A9O

0 r 1

where, thanks to (A.8), the integral in (A.l0) has been evaluated from

the theory of residues. Transforming W back to a,

F(p) e.m Pcosa dp = " s n
0

which is the desired result given in (A.4).

In order to show that the assumptions regarding the analyticity

of f(a), along with the conditions (A.3), are indeed true, consider

equation (A.l0) as a definition of the function g(W).
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Because of the conditions that F(p) be analytic for

Iarg pl < e , it follows that the integration for p > c in (A.1O)
may be displaced to an arbitrary half line jarg p) = £ > z (by choice),

from which it follows that g(W) is analytic for large IWI, provided

)arg W1 < e + w/2. Defining f(a) via (A.6), one then concludes that

for sufficiently large d, f(a) is analytic in Im a > d, IRe - arg ml

< C + n/2, which corresponds to the interior of the loop y'.1

In addition, because it has been assumed that

JF(p)j < MIPF "l+a eb In ,

it can be shown via (A.lO) that

.9M] < pe-pmwjcos(arg W) dp

0

< MlmWl~ a  -l+a e-X[COs(argW)-b/ImlWl] dx

1 0

Since the integral is bounded for sufficiently large fW(,

I Ig(W)l < M IWl-a , M > 0I 2 2

1 confirming (A.8), and since

1 f = -2Wg(W)

sin c*I
I
I
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it follows that

If(a)j < "1 e(l-aj)Imal

with a, = a, as assumed. Thus the proof is complete.

By means of the substitutions

F(p) = S(pf)

f (a') = [s(a' + n - - s(-' + Tr - fl]

M = ik (implying Im k > 0)

and replacing a' = a - w, equation (A.5) becomes

S(P) 1 eikpcosa [s(a - *) - s(-a + 2 - f)] da

Y
1

Fron Fig. A.1 and the relation between the contours y and y
2

the expression

S(p1) ekpcOs s(c - *b) da

Y

is obtained, which agrees with (A.l).

An important result of Theorem A.1 Is that an odd solution

to the equation
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I

2I 3 fW)em.pcOsa' da' = 0

Y

must vanish identically; consequently, a solution to the equation

S eikpcOsa s(c - *)d= =e ~ la 0 (A.12)

'Y

must satisfy the condition

s(cL- ) = s(2 -ci- ) , (A.13)

i.e., the coefficient of the exponential in the integral must be even

about a = w. This result is used extensively in formulating the

functional equations for the unknowns in Chapter III.

The justification of a representation such as (A.) for the

unknown fields satisfying the Helmholtz equation

(V2 + k2)S(p,o) = 0

is discussed in considerable detail in [51], and will not be reproduced

here for the sake of brevity. However, it is worthwhile noting that the

bounds placed upon the function F(p) in Theorem A.l include the functions

S(p,o) satisfying the edge and radiation conditions discussed in Chapter

II. Furthermore, from [51], the value of S(p,o) at p = 0, provided

S(0p,) is bounded, is given by

I
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S(O, ) = 2is(i-) = -2is(-i-) , (A.14)

and does not depend on o, as expected. The boundedness at p = 0 implies

a > 1, which also implies, from (A.3), that s(i-) < -, consistent with

(A.14).

The representation (A.l) is simply a superposition of elementary

plane wave solutions to the Helmholtz equation. This is more readily

seen by replacing a by a - it +o, whereby

S(P,0) = ~2j- e-ikpcos(a+o) s(a - w) da (A.15)

Y@

where y is simply the contour y displaced an amount w-0 to the right.

As discussed in [513, (A.15) represents a set of plane waves incident

from a direction 2w - a, where a is complex, allowing for evanescent

(decaying) waves.

Recalling the geometry for the scattering of a plane wave by a

resistive wedge, the incident field is given by

(Ui,Vi) = elikPcos(¢ o"€ )  (A.16)

Maliuzhinets shows in [51] that discrete plane waves, given by the

geometrical optics fields, correspond to poles of s(a-t) lying within

the strip w - 0 < Re a < 37 - 0. From (A.16), it follows that s(a-r)

has a pole at a = 2v - 00 with residue unity. Furthermore, the field

(A.16) is the only geometrical optics field incident from within
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Region 1 (< < 2n - p), as all other fields appear to emanate

from within the wedge (i.e., Region 2).

Therefore, it may be stated that s (a) (representing the field

in Region 1) satisfies an additional constraint for the wedge problem,

that is

s (a - 1) - (a - 2r + ) '  (A.17)

is analytic for p < Re a < 2w - p. This condition is stated in

Chapter III as a means of uniquely determining a solution to the

functional equations derived for the unknowns.

A.2 The Kontorovich-Lebedev Transform

The requirements for the existence of the K-L transform and its

inverse are rigorously described in [21,22,59], each of which prescribes

a set of conditions for a function f(p) or f(v) in order for the

integral formulas to converge. The results of [21] have been

reproduced without proof in Theorem 2, Chapter IV of this work.

Rather than repeat any of these derivations here, the author

will simply state the necessary results, and then apply them to the

particular functions being considered in Chapter IV in order to

justify the assumptions made therein.

Specifically, a set of total fields (U,V), representing the

solution to the scattering by a resistive wedge of an E- or H-polarized

incident plane wave, were shown in Chapter II to have certain

boundedness properties as p approaches zero and infinity.

LI
I
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Near the vertex of the wedge

(UV) = OV( ) , 6 > 0 , 0 , (A.18)

which allows (U,V) to be at most a nonzero constant at p 0 0. Further-

more, by writing,

(UV) = (Ug + Ud, V + Vd) (A.19)

i.e., as a sum of geometrical optics and diffracted fields, the

radiation condition requires

limp1/2 ik [ 0 (A.20)

d d -1/2

which implies that (U ,V ) decay at least as rapidly as p as

p - -. In addition, several of the inversion theorems assume

Im k > 0, in which case, writing

(UV) (Ui + US , Vi + Vs)

the scattered fields (US,v ) behave as e-bp as p , where b > 0.

It is convenient to summarize these results into a set of

assumptions regarding (U,V):

* I
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1. There exist A, po > 0 such that

for 
jU,Vj < _ Ap , 6 > 0 

(A.21)

j 2. There exist B,C > 0 such that

d d /21 ekud,vd < /2 ekp (A.22a)

_ug'vg < C (A.22b)

for p > P0

Since the value of juiVI is unity for all p, it follows

that (US,Vs ) satisfy (A.21) above. Inasmuch as the scattered fields

contain geometrical optics terms, (US,V s) also satisfy (A.22b).

In Chapter IV, the modified scattered fields

u ] U s + c e i kp

v Vs + d e 
ikp

Iwhere c = -Us (p= 0), d = -Vs (p = 0), were defined. This implies

that (u,v) satisfy (A.21) with 6 strictly greater than zero. In a

Imanner analogous to (A.19), it is possible to separate the geometrical
optics terms from (u,v), (as was done in [23]), viz

U = Ug + ud = (Us g + c g e i kp ) + (Usd + cd eikP) (A.24)

j and similarly for v. Note that ug,v g both satisfy (A.21) with a > 0,

in addition to (A.22b).

I
I
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Consider the K-L transform of (u,v), given by

(uv) = (u,v)H )(.kp) p(A.25)

0

Because H()(kp) = O(pI-RevI), it follows from (A.21) and (A.22b) that

the integral (A.25) is uniformly convergent for IRe vi < 6, and thus

(uv) are analytic functions in the strip IRe vi < S. In addition,

from [23] it can be shown that (udvd) approach zero as Im vj ,

IRe vi < 6. Unfortunately, the geometrical optics transformed fields

do not exhibit such behavior.

In particular, a general form for (ug'v g ) is

N

(ug,v g) = E an[e'ikpcoson - eikp ] (4.26)

n=l

where an = - n' n is the negative direction of propagation of the

plane wave, and an,N are constants. The transform is then given by

N

(ug'vg) =  a (e'ikPcosa- eikP)H(l)(kp) pn=l n Vp
0

N 2ian e-i(7/2) 1 - cos v( an) (2 v sin v (A.27)
n=l

Note that the second order pole at v = 0 is cancelled by the second

order zero of [I - cosv(7-Bn) ] . Therefore (u9 ,vg) are analytic in

IRe vi < 1. The minus sign corresponds to 0 < n <- 2n, the plus sign

to -2n < Bn (< 0. It is easy to show that (u9,v9) become unbounded

for w/2 < ini < 3n/2 when v -i. It is for this reason that one j
cannot perform the inversion

Iit
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(uv) - . (uv)v J.(kp) dp

directly. Instead it is the integral

i-

(u- u, v - vg) -u-u , v - )vJ (kp) dp (A.28)
G o

which must be considered. Jones avoided this problem in [22) by

defining the inversion via

ica

(u,v) = - lira , e 2 (uv)vJ (kp) dp (A.29)
e+O + -O+

allowing the inclusion of the geometrical optics terms.

I It should be noted that should there exist intervals in € for

which (ug,v g ) are zero, then the inversion may be carried out for these

values of *, and the result analytically continued for other values.

This method neatly generates the geometrical optics terms.

In Section 4.2.2, the derivation of the integral equations for

I the various unknowns made use of a formula of the form

00 1 -i6r/2)v J 0 s n pr p ei( /
S ugH(1 (kp) dp = - e S .  COS + Co Vie du .(A.30)

I 0 -10.

It is desirable to explicitly show this result.

By inserting (A.26) into the LHS of (A.30) one obtains

ugi )(kp) d 2an  e't(/2)v sin v(" 18n( 1uk Tin vr [ + n (A 31)
0 n-l

I
_ ___ _7
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Similarly, substitution of (A.22) into the RHS of (A.30) gives

1 e-i(w/2)v w u sin y7 e" 2 ' u(p) du
os 1W + Cos V=

N 2an eri(r12)v l - ch( - JnD '
I k ch wT' + cos vr d'

n=l 0

N 2an e-i(/2)v r sin v(r - a8n) 1
= + -. (A.32)

k sin vwsin lonl

n=1

and hence (A.30) is indeed valid.*

This result was derived in Chapter IV in a slightly different manner,
based on the uniform convergence of the transform representation of
U". The results are equivalent.

f
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